
Plebble: blockchain, local economies, marketplaces and social order

root1m3@plebble.us
April 2023

Abstract
This paper introduces Plebble, an open-source project that aims to address the issues of distributed
consensus, local economies, and privacy wallets in the cryptocurrency space. In contrast to many
other cryptocurrency networks that are often driven by hype without substance, Plebble is grounded
in the values of the cypherpunk movement and seeks to empower individual sovereignty while
promoting a social order based on peer-to-peer interactions. We argue that a future of multiple
networks underpinning worldwide values requires a compelling global low-cost distributed
organism that can progressively replace central governments with effective wealth redistribution
without compromising freedoms. We present both philosophical and technical aspects of the Plebble
project, which includes a reference implementation and a running mainnet.

mailto:root1m3@plebble.us?subject=plebble%20white%20paper

1 Introduction
The contemporary human civilization is situated upon the bedrock of ancient structures that were
erected countless eons ago. This empirical observation suggests that our current society has
emerged as a direct consequence of the cumulative efforts and endeavors of numerous cultures and
civilizations that have thrived and perished throughout the expanse of human history. The existence
of these edifices is a testament to the remarkable engineering prowess and architectural ingenuity of
our predecessors, and bears witness to the enduring legacy of their achievements. The discovery and
study of these ancient structures continues to provide valuable insights into the evolution of human
civilization and serves as a reminder of our shared heritage as a species.
It is worth noting that the vast majority of these decisions were made well before the advent of
technological breakthroughs such as the widespread availability of the internet in the 1990s, the
landmark achievement of the first communication between two computers via telephone by
Lawrence Roberts in 1965, and the invention of the first electronic general-purpose digital
computer, ENIAC, in 1945. This disparity between the pace of technological progress and the
comparatively sluggish advancement of our social structures, including government and law,
underscores the need for ongoing efforts to bridge the gap between these two domains. Failure to do
so risks perpetuating outdated policies and practices that may no longer be effective or relevant in
our rapidly evolving technological landscape.
Moreover, it is important to note that changes in our social structures are not only gradual, but also
tend to be incremental in nature, involving small course corrections that build upon the existing
state of affairs. This can often result in a certain degree of inertia and resistance to change, as well
as a tendency to cling to established norms and traditions, even in the face of new challenges and
emerging opportunities. However, it is crucial to recognize that such incremental changes can also
be a source of stability and continuity, providing a sense of continuity and predictability in an
otherwise rapidly changing world. As such, a balanced approach that recognizes both the need for
continuity and the imperative of change is essential for ensuring the long-term viability and success
of our social structures.
The advent of the internet has fundamentally transformed the way in which we conceive of and
interact with our social structures. In many ways, the internet has served as a game changer,
enabling us to overcome the constraints of distance and connect with others on a global scale. The
ability to communicate and exchange data with anyone, anywhere, at high speed has revolutionized
the way in which we conduct business, share knowledge, and build relationships.
However, it is worth noting that our inherited social structures were not designed to accommodate
these kinds of technological advancements. Our traditional models of representation and centralized
planning are highly territorial in nature, and are often ill-suited to the rapidly changing and highly
interconnected world of the internet. As a result, there is a pressing need for us to re-imagine and re-
invent our social structures to better reflect the realities of the digital age.
This requires a concerted effort to explore and research new models of governance, collaboration,
and decision-making that can better accommodate the realities of the internet era. It also demands a
willingness to challenge established norms and assumptions, and to embrace the potential for
innovation and change that these new technologies present. Ultimately, only by re-imagining our
social structures in light of these transformative technologies can we hope to build a more resilient,
adaptive, and inclusive digital society for all.
The central aim of this project is to explore new and innovative models of social order that can
potentially improve resource allocation, reduce operational costs, and ultimately enhance the quality
of life for individuals across the globe. Specifically, the project is focused on developing a flat
organizational structure comprised of numerous small, autonomous entities that are fully sovereign
and not dependent on existing government structures.
The rationale for this approach is that traditional government structures have proven to be highly
centralized and bureaucratic, often leading to inefficiencies and inequities in the allocation of

resources. By contrast, a flat organizational structure characterized by many small, autonomous
entities has the potential to distribute power and decision-making more evenly, resulting in a more
equitable distribution of resources and a greater degree of responsiveness to the needs and concerns
of individuals.
One key advantage of this approach is that it can potentially be less expensive to operate than
traditional government structures, as it relies on smaller, more decentralized entities rather than
large, centralized bureaucracies. This can free up resources that can be directed towards other
priorities, such as infrastructure development, social welfare programs, and environmental
sustainability initiatives.
Ultimately, the goal of this project is to develop a more robust and resilient model of social order
that can adapt to the rapidly changing technological and social landscape of the 21st century.
Let us embark on a thought experiment and imagine rewinding time all the way back to the era of
cavemen, or even before. Let us assume that modern amenities such as light, water, and
communications already existed, and that we have now introduced a new resource: computers and
the internet. With these technological capabilities as our foundational plumbing, we fast-forward
through history to explore how our social structures might have evolved differently.
Would countries, fences, and governments have ever been created in this alternative reality? Would
representative democracy, politicians, and voting have even been invented? And when it comes to
the exchange of value, would we have replaced bartering with central coins if computerized
algorithms, automation, and tokenization had existed at the time? Would we have still developed
centralized laws applicable to specific territories?
As we contemplate these questions, it becomes clear that we need to accelerate our evolution and
increase our standards of living, knowledge, and freedoms. Our ultimate goal should be to eradicate
poverty and create a society in which working for a living is no longer a necessity.
This requires a call to action for cooperative work and collaborative efforts to explore new and
innovative models of social organization that can accommodate the realities of the digital age. By
harnessing the power of technology and embracing new ways of thinking about governance and
decision-making, we can build a more equitable, sustainable, and prosperous future for all.
Plebble represents an initiative to construct a foundation for such infrastructure in a grassroots
manner. While we have not yet reached our ultimate goal, let us assume that every person on Earth,
including our hypothetical future friends living on Mars and those residing on a futuristic Titan
Orbital Station, has access to a reliable computer and high-speed internet connection.
This project encompasses not only technical design details and a reference implementation, but also
a philosophical framework for understanding the context and significance of this endeavor. By
building a trusted and decentralized network infrastructure, we aim to create a more inclusive and
equitable digital society, one that can withstand the challenges of the modern age and promote the
flourishing of all individuals and communities.

2 Related work
Since its release in January 2009, Bitcoin has
established itself as the preeminent
cryptocurrency, garnering significant attention
from researchers, developers, and enthusiasts
alike. Over the years, countless other
cryptocurrency protocols have emerged, fueled
by novel insights and disruptive aspirations,
such as challenging the trust-based institutions
of the banking system. However, despite the proliferation of alternative options, Bitcoin remains the
dominant protocol for those seeking an alternative global economy, boasting a near-ubiquitous
presence in the cryptosphere and leading the marketcap charts [21].

It is important to note, however, that being the first approach, Bitcoin is not without flaws and is
likely to be subject to improvement. Nonetheless, its enduring influence and popularity demonstrate
the enduring appeal of decentralized, trustless digital currencies, and suggest that the
cryptocurrency movement is far from over.
Despite Bitcoin's strong network effect designed to be a monopoly [16], numerous initiatives have
been explored, either as protocol forks or entirely new developments. Forks typically introduce
slight variations to the original protocol, such as NameCoin [19] and LiteCoin [20] (the first and
second altcoins, with variations in block speed and hashing algorithm), BCH [15] (variations in
maximum block size), Ergon [14] (variations in the rewards algorithm), DogeCoin (variations on
social appeal by introducing fun), along with an ever-growing list of Bitcoin forks. New
developments typically introduce more significant conceptual changes rather than small tweaks,
such as Ethereum [17] (tokenization, smart contracts), IOTA [18] (multidimensional DAG instead
of a linear blockchain), NEM [19] (an early Bitcoin competitor written in Java rather than C++),
NANO [22] (fast, zero-fee transactions), and many more.
Discussions about protocol supremacy are a common and often toxic topic in social media.
Unfortunately, they tend to devolve into unproductive debates fueled by hatred and closed-
mindedness, with little progress made toward any meaningful resolution.
In order to facilitate a smooth transition into web3, the question arises as to what kind of node
software should be developed that would be universally accepted, without any apprehension of
making the wrong choice. The solution lies in a peer-to-peer (P2P) protocol that doesn't impose a
set of central rules agreed upon by all, thereby allowing individual nodes to run on their own rules
without the risk of being invalidated by others. This meta-protocol, without any common rules,
forms a crucial aspect of Plebble's vision.

Part I. Philosophy
This section reflects the author's personal
perspective, shaped by his experiences,
education, and inspirations. While the
development process was primarily objective
and impartial, it remains open to incorporating
other ideals, as detailed in Part II.

1 Vision
Although the idea of replaying history may seem daunting and difficult to execute, the challenge
lies in the fact that every time we override a decision, we effectively fork the timeline, and this
process applies to every decision made in the past without considering the internet. However, it is
the final fork resulting from the composition of
all the forks that we are interested in pursuing.
Even though we have not followed the
procedure formally, we strongly believe that it
serves to illustrate the idea of proposing a
change that does not rely on adding incremental
modifications to our current state, but instead on
a process of rebuilding the foundations of our
society to discover an alternative model that we
could transition to.
It is possible to imagine a society in the future
that is not bound by the structures inherited
from a time when fast and instant peer-to-peer
interactions were not possible. We are motivated

Figure 1: Illustration of the history-fork idea
based on the existence of instant P2P
communnications since the beginning of human
civilization.

by the belief that it is worthwhile to invest our time and effort in joining the movement and
developing a prospective technology that can serve as the seed for the production of fundamental
plumbing infrastructure suitable for creating a new social order that can accelerate our evolution as
a civilization [1].
Our vision is built on a foundation of peer-to-peer networks. We envision a future where everyone
actively participates by running their own node, with a flexible range of capacity and power. This
includes the use of nodes that are as affordable as raspberry pi, which minimizes user costs and
reduces entry barriers.

2 Economics.
Inflation/deflation.
The popular saying in the Bitcoin community, "Be your own Bank", emphasizes the idea that we
can operate our money without relying on third-party institutions, particularly banks. However, this
perspective does not consider the larger picture of the economy, including the entire cycle of money,
from creation to destruction.
Bitcoin allows for the operation of money without intermediary institutions, and as a global
currency, having a fixed monetary supply is a sufficient proposition. The protocol, enforced by
participant nodes, ensures that no one can influence the rules of money creation because they are set
in stone.
Printing money.
The idea of a global coin can give the impression of centralization, as it implies that all values are
forced to be represented under the same monetary scheme. This means that all values are linked and
affected by each other, rather than being disconnected. This interconnectedness can lead to the
propagation of waves and, eventually, the production of tsunamis, which can be seen as a metaphor
for global crises.
At a certain level of abstraction, both Bitcoin and central banks have similarities. Both are
responsible for the creation and destruction of global money employing a specific set of rules or
procedures. They both are systems that solve an optimization problem in different ways. By
controlling the amount in circulation they are designed to maximize social efficiency.
Central Banks and Bitcoin, through their algorithms, control the amount of money in circulation to
maximize social efficiency. When there is too much money in circulation, people may stop
producing and trading value, and shortages can also have the same effect. Therefore, there exists an
optimum amount of money in circulation that varies over time (Bitcoin is deflationary and supply
never increases), enabling people to focus on delivering value to others, which can be referred to as
social efficiency.
As global money represents the aggregation of all possible values, it is difficult to determine the
optimal point where social efficiency is achieved. All values are approximate and relate to
macroeconomics.
As mentioned, Bitcoin runs a deflationary model. A limited supply of 21M ensures zero inflation.
However supply experience some reduction caused by different events: Over time users lose their
private keys, or never move them (e.g. approximately the first million Bitcoins have never been
moved by Satoshi Nakamoto and could potentially be forever lost). Other users intentionally burn
tokens by transferring coins to arbitrary addresses with unknown secret key for hash timestamping
purposes.
We find the Bitcoin cryptoeconomics too simple to be considered beyond the realm of a first
approximation to a more precise real world scenario aiming to optimise social efficiency.
Be your own central bank.
We put forward the lema “be your own central bank”, a twist on the Bitcoin lema “Be your own
bank”. The later meaning that you own and control your secret keys without the need of a
supervising authority.

A Global Coin, either Bitcoin or Fiat, carries a notion of centralization by representing all possible
values humans can create and trade with, an idea usually represented by the symbol ∞/21M.
Being your own central bank neutralizes such conceptual reduction that limits resolution and forces
an inaccurate representation of reality. Under this lema, in addition to owning coins, individuals
also own the right to control their own coin inflation rules, idea that can be represented by the
symbol ∞/∞.
The concept boils down to distributing the economy as if there were as many Central Banks issuing
different coins as people.
Global money, whether it be through Bitcoin or Central Banks, requires the concept of prohibition
to be enforced. However, the methods of enforcement differ between the two. Bitcoin achieves it
algorithmically by limiting the creation of new Bitcoins, while Central Banks rely on legal
regulations to prevent the printing of money outside of certain parameters.
And, naturally, both models exhibit centralization when they are operated as a monopoly in absence
of competition. In Bitcoin this is known as maximalism. Fiat is controlled centrally in all respects,
while Bitcoin's monetary rules are central, enforcement is only distributed. A global coin, be it Fiat
or Bitcoin, also promotes speculation, bubbles, and crashes. Let us embrace complete
decentralization. Under the motto "Be your own central bank," we introduce the concept that
individuals can create and destroy their own money, enabling them to digitally trade any value they
can contribute to society.
Let's empower individuals with control over inflationary rules and exchange prices, utilizing
automation to simplify complexities and allowing anyone to actively participate in the global
economy by operating their own coins, similar to how Central Banks operate state money. This "Be
your own central bank" approach grants individuals freedom, but also comes with the responsibility
to avoid creating scam-coins, even though they may emerge. However, as long as their presence
does not negatively affect others, they should be allowed to exist. A scam-coin is one that fails to
deliver its associated promise, while an honest coin does fulfill its promise. Exchange operation is
what determines the trustworthiness of a coin, and algorithms can rank them accordingly.
The true measure of scarcity lies in a coin's ability to fulfill its promise, not in its monetary supply,
which in the case of cryptocurrencies is not possible to guarantee anyway. Trying to enforce
artificial scarcity through algorithms is futile. While Bitcoin has artificially limited its supply to 21
million coins, this approach assumes a maximalist perspective as if the Bitcoin protocol was
ubiquitous and there were no other networks handling global values. This maximalist view leads to
a centralized symmetry, which contradicts the idea of full decentralization. In a decentralized world
with billions of coins and distributed inflation rules, true scarcity will be determined by a coin's
ability to deliver on its promise through the exchange operated by the user.
In this system, there will be a spectrum of coins, ranging from those with fixed supply to those with
hyperinflation, and everything in between. The important thing is that each coin has a specific scope
and is weakly coupled with the rest of the coins. In other words, each coin represents a local value
and does not affect the overall distributed soup of values. Our algorithms will continuously learn
and determine the reliability of each coin, allowing us to trade with confidence.
The concept of providing immediate liquidity to any product, service, or commitment is a powerful
one. With the ability to create a coin that represents a promise, anyone could start anew by
formulating that promise and entering the trading market.
Barter and money.
Debt and barter were the primary systems of exchange before the invention of money. In small
communities, the issue of the "double coincidence of wants" was not a problem as it was easy to
find a suitable trading partner [23]. However, with the growth of trade and commerce, barter
became limited due to the difficulty of finding a trading partner and determining the value of goods
and services being exchanged. Money was developed as a standardized medium of exchange to
solve these problems. Money allowed for more efficient and effective trade, as it had a widely
accepted value and could be used to purchase a range of goods and services. It also made it easier to

store wealth and conduct transactions over time and distance. The adoption of money played a
significant role in the development of complex economies and modern societies.

Barter revisited.
It is true that tokenization and matching
algorithms can help address some of the issues
with barter, such as finding a suitable trading
partner and exchanging goods and services of
equal value. By tokenizing goods and services
and using matching algorithms, individuals and businesses can trade with each other more easily
and efficiently, without the need for a direct exchange of goods and services.
Tokenization and matching algorithms can address the computational challenges of finding a
suitable trading partner and exchanging goods and services of equal value that were previously
limitations of barter. With the use of these algorithms, goods and services can be represented as
tokens or digital assets, making them easily transferable and tradable. Matching algorithms can then
be used to pair buyers and sellers based on their preferences and the tokens they hold, enabling
efficient and accurate exchanges.
Coins play a critical role in providing liquidity and divisibility to goods, services, and promises.
Considering that coins are indeed medium of exchange intervening in a transaction the name barter
might not be exact, since barter implies the absence of any medium of exchange.
When we consider the distance between tokens and the real-life assets they represent, the concept of
bartering becomes aligned with local coins. This is because each token has a one-to-one
relationship with a specific asset.
A single global currency (one unique coin) reduces a diverse range of values into one liquidity pool,
leading to a centralized and interconnected global economy that is vulnerable to spreading
economic shocks and waves, such as growth and recession periods. The 2008 Recession is a prime
example of this, as it originated from excessive mortgage lending to high-risk borrowers in the U.S.
and then spread to affect economies around the world, leading to a prolonged period of economic
hardship for many.
In a distributed economic paradigm, our understanding involves having a proportional number of
tokens (including fungible coins and non-fungible tokens or NFTs) as there are values, such are
goods, services, and promises. This creates targeted liquidity and facilitates automated trading.
Just like traditional currency, local coins can be utilized to hedge risks and offer investment
opportunities for diversifying portfolios and managing wealth.
A useful analogy for comparing global versus local is imagining sailing a boat in open seas and
encountering a large wave (like a tsunami) versus encountering many smaller waves. Each wave
represents inefficiencies such as market volatility, asset bubbles, financial instability, market
crashes, economic downturns, income inequality, or social unrest.
The same type of inefficiencies can be observed in local economic models, but their impact is less
severe and more contained compared to global economies. This aligns with the notion of global
resilience offered by distributed economic models.

3 Tokenization
To develop an e-barter system, we propose extending the capacity to print money to all individuals,
rather than restricting it to national entities. This approach, which we refer to as "being your own
central bank," would empower individuals to create personal coins via a sovereign node. Each user
would have the freedom to establish their own cryptoeconomic policies, including supply and
print/burn politics, along with an associated promise to deliver on the exchange of their coins. This
system would resemble the practice of national entities printing and burning money to maximize
population performance, but with a more individualized and decentralized approach.

Similar to a shop tender, users in the proposed e-barter system would deliver on their promises in
exchange for the associated coin, which they issued and distributed at an earlier time. In this
context, a coin represents a debt for the creator and acquisition power for other users.
We define functional and reliable coins as those that allow users to successfully exchange them for
their associated promise. Any failure to deliver on the promise would result in the flagging of scam
coins. We do not fear the creation of scam coins and advocate for their free creation. Rather than
enforcing prohibition, punishment, or any form of social cancellation, we propose living safely with
them with the aid of our trusted AI. Our approach aims to maximize both freedom and safety in the
e-barter system.
The proposed e-barter system may lead to a positive change in users' perception of the economy.
Prices may no longer be indicative or useful in cases where a wallet contains thousands or millions
of different coin balances. However, users may gain a better understanding of their acquisition
power relative to their total wealth.
In this new paradigm, imagine a supermarket built solely for a user's personal use in the metaverse.
The user could view all available items, including goods, services, or promises, and purchase items
that are "tagged for them" with a price represented as a percentage of their own wealth. As soon as
an item is added to their shopping basket, their acquisition power decreases, and products that are
no longer within their reach disappear from view. For instance, adding a Lamborghini Diablo to the
basket may leave only a loaf of bread and a few poems available for purchase. However, returning
the car to the shelf would reveal a full array of products to choose from.
Such an experience is possible with the use of the Plebble wallet, which is equipped with integrated
AI.

4 Scarcity
Satoshi Nakamoto created a fixed supply of 21 million Bitcoins to ensure that the coin would be a
scarce and valuable resource. However, this design did not account for the possibility of dealing
with multiple networks. As legitimate Bitcoin software forks and continuous research and
development on the technology result in the emergence of new networks, an increasing number of
coins become available to the public, rendering the notion of an infinite cryptocurrency supply. The
Bitcoin lema ∞/21m (everything divided by 21 million) is not realistic unless a single network is
agreed upon worldwide, a scenario that is unlikely given the continuous nature of innovation.
The idea of replicating the scarcity model of fiat currency in the cryptocurrency space is a
misguided approach that has led to maximalism and conflict among enthusiasts vying for the
survival of their preferred coin. This has resulted in a toxic atmosphere that undermines legitimate
research and experimentation aimed at finding better solutions for building a more trustworthy
society. Unlike in the traditional world, where nations use the law to control currency scarcity and
only allow their trusted central banks to print money, such an approach is unfeasible in the
cryptocurrency space. Any design that seeks to limit the supply of cryptocurrency is inherently
flawed. Instead of replicating the fiat model, it is essential to explore alternative solutions that are
better suited to the unique features of the cryptocurrency space. By doing so, we can foster a more
collaborative and productive environment that is conducive to building a more secure and efficient
financial system.
To design a successful cryptocurrency, it is necessary to consider the co-existence with numerous
other crypto platforms, potentially millions of them. Plebble's approach to this challenge is to
encourage personal coin creation, allowing individuals to centrally control the printing and burning
of their own money, similar to central banks. This approach enables maximum distribution and
leverages on the unavoidable fact of an infinite supply, with scarcity not residing in the coin itself,
but rather in the ability to deliver on the associated promise. In contrast to traditional currencies,
where scarcity is enforced through laws and regulations, in the cryptocurrency world, scarcity is a
function of built trust through the ability to fulfill promises made through the use of personal coins.
By prioritizing the ability to deliver on promises over artificial scarcity, Plebble aims to create a

more robust and equitable cryptocurrency ecosystem that can better serve the needs of individuals
and society as a whole.
To provide a concrete example of the concept, let us consider the case of Alice, an individual who
creates a cryptocurrency called bikeCoin to facilitate the sale of bicycles in her business. The
promise underlying bikeCoin is simple: it can be used to purchase bicycles from Alice's shop. As
the creator of bikeCoin, Alice has the authority to control its supply, continuously adjusting the
amount of currency in circulation through the creation or destruction of coins. Alice would employ
an algorithm that takes into account various economic parameters in order to maximize sales. When
the demand for bicycles outstrips the supply of bikeCoins, Alice would burn bikeCoins (or increase
prices) to reduce demand. Conversely, if unsold bicycles accumulate, she would print more
bikeCoins and put them into circulation (or lower prices). Through such mechanisms, Alice has
complete control over her local economy. The perceived value of bikeCoin will be tied to Alice's
ability to honor her promise to buyers, thereby ensuring a smooth exchange process.

5 Politics.
The origins of representative democracy can be
traced back to ancient Greece and Rome. In
Athens, citizens would gather in the agora
(public square) to discuss and debate important
issues facing their city-state. This system of
direct democracy allowed citizens to participate
in the decision-making process and vote on
matters such as war and peace, taxation, and
public works projects.
In Rome, the concept of representative democracy was developed. Citizens elected representatives
to make decisions on their behalf, rather than participating directly in the decision-making process.
This system of governance was more efficient and allowed for the creation of a professional class of
politicians who could devote their time to governing.
Representative democracy as we know it today developed in Europe during the Middle Ages,
particularly in England. The Magna Carta, signed in 1215, established the principle that the king
was not above the law and that certain rights were guaranteed to all citizens. Over time, the power
of the monarchy was gradually curtailed and a system of parliamentary democracy emerged, with
elected representatives making decisions on behalf of their constituents.
The ideas of Enlightenment thinkers such as John Locke, Montesquieu, and Rousseau also had a
significant impact on the development of representative democracy. They argued that governments
should be based on the consent of the governed and that power should be separated into different
branches to prevent tyranny. These ideas influenced the drafting of constitutions and the
establishment of democratic governments around the world.
It could be argued that if there had been a technology available at the time that was designed to
circumvent the need for third parties, the evolution that took place may not have occurred.
In the present model, decision-making power originates from the people but is then transferred to a
relatively small number of groups through the voting mechanism. This transfer of power leads to
the people losing their decision-making ability and being excluded from the process until the next
election cycle. Additionally, public demonstrations may arise as a result of this loss of power, which
could have been avoided if people had not been sidelined in the first place.
The voting process takes the diverse perspectives of individuals and reduces them to a few select
ideologies that are deemed to be the best fit. This can result in the unique ideas and values of
individuals being overshadowed by the dominant ideologies that are represented in the voting
process.

The accumulation of power often leads to
centralization, which in turn creates a
vulnerability to corruption. As power becomes
concentrated in the hands of a few, there is an
increased risk of abuses of power and unethical
behavior, as there are fewer checks and balances
to prevent such actions. This centralization can
be particularly susceptible to corruption, as
those in power may become more interested in
maintaining their own power and influence than
in serving the interests of the wider population.
With the appropriate peer-to-peer technology, it may be possible to establish and maintain a public
system where decision-making power is distributed among all individuals. Such a system could
allow every person to have a voice in the process, steering the system according to their own
interests at any given time. This would be possible because the common interest of the population is
merely the sum total of each individual's interests. As a result, traditional political structures such as
voting theatres, representatives, and politicians could become obsolete, replaced by user automation
that acts on behalf of individuals with maximum accuracy. By removing the need for third parties in
the political process, this system could potentially be more efficient, transparent, and responsive to
the needs of the population.
In this proposed system, the traditional ballot boxes used in elections could be replaced by control
panels. These control panels would allow
individuals to have direct control over the
decision-making process, enabling them to make
informed choices and have their voices heard.
By replacing the physical act of voting with
digital control panels, the process could be
streamlined and made more accessible,
potentially increasing participation and
engagement among the population.

6 Law.
In light of our focus on decentralization, it is
imperative to approach the concept of law from
a perspective that critically examines the
prevailing centralized structure and proposes a
framework for a peer-to-peer decentralized legal
system.
One of the primary characteristics of
contemporary law is its disregard for individual sovereignty, as no individual holds authority over
the prevailing and formidable system that enforces a social construct of regulations that apply to all
members. However, upon closer examination, this notion is debatable. Various laws exist that differ
from one another and are specific to people residing within particular boundaries. While this may be
viewed as a decentralized approach, it remains rather centralized as a large number of individuals
are subject to a shared set of rules irrespective of their agreement with them.
Law is a complex subject, and any attempt to revamp it has the potential to spark considerable
controversy. Nonetheless, in the realm of research exploring alternatives, it is imperative to remain
open-minded and receptive to new ideas.

Figure 2: The voting process reduces rich
individual mindsets into a contribution to the
best matching of a handful ideologies.

Figure 3: Ballot boxes replaced by control
panels.

To streamline the discussion, it may be helpful to differentiate between actions performed by
individuals utilizing digital means, naming it digital law, and other actions occurring in contexts
beyond the scope of this analysis.
Although they may be regarded as outlaws within the current establishment, as sovereign nodes,
they possess a system for dispensing justice.
Nodes have independently developed a law in a
specific electronic exchangeable format. Unlike
the traditional concept of law, such regulations
are created by the nodes themselves, and consist
of a collection of articles that they have either
created or borrowed from prior interactions,
reflecting the conditions they are prepared to
present and implement in each peer-to-peer
interaction with other nodes.
In a peer-to-peer interaction between two
sovereign nodes, they can exchange their
respective laws, scrutinize each other's articles,
and potentially integrate those articles from the
peer's law that would enhance their own
regulations. Subsequently, both parties negotiate and settle on a mutually acceptable law that will
govern their future course of events.
Undoubtedly, this scheme should be automated to the greatest extent possible as relying on human
intervention alone could result in an unmanageable overhead.
A law is essentially a compilation of articles,
each of which constitutes an interchangeable
unit of information and code, forming a
program. In addition to textual content in
multiple human languages, each article also
contains code that generates a score or
percentage of compliance when provided with
evidence. Another program, known as a judge,
considers this score to evaluate the entire
situation and provide a verdict.
This process can be executed in real-time during
any peer-to-peer transaction to provide
continuous feedback on whether the agreed-
upon terms are being followed. This can be
helpful in adjusting behavior promptly to
prevent any issues from escalating.
The fundamental system can be linked to a
penalty/compensation contract that could be automatically executed based on the judge's verdict.
Law is code. Code is Law.
The idea of a decentralized justice system that can operate almost entirely in an automated fashion,
enabling individuals to keep their interactions in line with the agreed-upon terms in real-time, has
the potential to significantly reduce the burden on the traditional justice system. This is not only due
to the potential increase in the number of verdicts that can be efficiently delivered by leveraging
advancing technology, but also because it could minimize the number of cases that escalate simply
because of a lack of awareness by one or both parties.

Figure 4: Common law is obtained after a
merge process between two laws supplied by
each peer. The outcome, when signed by both
parties, serve as regulatory basis for the
remaining events in the interaction.

Figure 5: The elements involved in an
automated justice systems are:

Evidence: Verifiable facts.
Article: program to score evidences.
Law: collection of articles.

Judge: program that processes evidences
against a given law to produce verdict.

Verdict: penalty/compensation result

7 Anonymity. Identity.
Discrimination continues to be a pressing issue,
and a considerable amount of tax-payer money
is spent on fighting it. However, the
fundamental concept of identity, which reveals
sensitive personal information such as race, age, gender, and skin color, serves as the basis for states
and regulated businesses. Such operations are reliant on the 1-to-1 association of person-id, thus
opening the door for discrimination on various logic levels.
The concept of identity is central to the operation of states and regulated businesses. Personal
identification, such as national identification numbers, drivers licenses, and passports, serves as the
basis for accessing essential services and participating in society. Such identification facilitates the
collection of sensitive personal information, which can be used to discriminate against individuals
based on their characteristics.
The 1-to-1 association of person-id also serves as the basis for government and business operations,
enabling the identification and tracking of individuals' activities. However, this association can lead
to discrimination on various logic levels. For instance, biased algorithms and automated decision-
making systems may utilize personal identification data to make decisions that disadvantage certain
groups, such as those of a specific race or gender.
Moreover, the use of personal identification data in law enforcement activities can lead to racial
profiling and discrimination against specific groups. Additionally, the reliance on person-id in the
workplace can result in discrimination in hiring, promotion, and salary allocation.
Discrimination remains a pervasive problem in society, and addressing it requires a fundamental
rethinking of the role of identity in the framework of states and regulated businesses.
It is common practice in literature to use pseudonyms, particularly when the content is dissident in
nature. This practice dates back centuries and has been utilized by many authors. For example, José
Augusto Trinidad Martínez Ruiz, who was a political radical in the 1890s, used the pseudonym
"Azorin" to sign his works. Similarly, in 1721, Benjamin Franklin was denied the opportunity to
publish a letter in a newspaper and resorted to using the pseudonym "Silence Dogood".
In contemporary times, using monikers, nicks, aliases, and avatars to register social media accounts
is widely accepted as a normal practice for safety reasons. Revealing one's true identity online can
be risky, especially for vulnerable and impressionable children.
However, it is worth noting that governments can also benefit from using individuals' true identities,
particularly in law enforcement and crime investigation. Techniques such as follow-the-money and
identity tracking can be more effective in catching named criminals. This aligns with the common
trade-off where individuals may sacrifice certain freedoms in exchange for greater safety, a notion
that is often endorsed by governments.
In our thought experiment about re-making the system, we have temporarily set aside the issue of
crime fighting, including how illegal individuals would be prosecuted. Instead, we have focused on
designing a system for honest people (the happy case). This decision was made because we
recognize that the notion of illegality may differ between a classical law system of any country and
our projected re-make of a peer-to-peer (P2P) law system for sovereign individuals. In such a
system, individuals would have the freedom to decide how much privacy they are willing to
sacrifice in exchange for their own safety, without coercion. We plan to address the issue of physical
world crime and how to deal with illegal individuals at a later stage, once we have a clearer
understanding of the similarities and discrepancies between the two legal systems.
Personality
In our proposed system, we recognize the need for an intermediary artifact between an individual's
true identity and their digital presence. This intermediary artifact is what we refer to as personality.
Personalities are anonymous digital identities that individuals create and use to interact with society.
The link between an individual's true identity and the personality they create is intended to be kept
private and never disclosed to anyone unless voluntarily shared. For instance, users may choose to

reveal their personalities to governments for record-keeping purposes. We suggest that this process
could be automated and integrated into user wallets for those who opt-in to this feature.
Users of the proposed system, called Plebble, have the ability to create an unlimited number of
personalities. Each personality is essentially a pair of keys - a secret key and a public key - derived
from standard public key cryptography (specifically, the ECC secp256k1 algorithm). The public key
is referred to as the personality-public-key and
its RIPEMD160 hash serves as the personality-
id. The personality-id can be utilized to
continuously build user profiles based on P2P
interactions, similar to systems that rely on
identity-ids. Meanwhile, personality-public-
keys can be used for various functions such as
signing, verifying, encrypting, decrypting
documents, and producing certificates [4].

Certificates serve as the fundamental building
block for constructing webs of trust in the
proposed system. These tamper-proof graph
structures are secured by digital signatures and
can be used by businesses, organizations, supply
chains, or any other construct based on trust.
Certificates can be leveraged to create
automated or semi-automated workflows,
allowing for more efficient and secure
processes.

8 Financial freedom.
One key feature that we aim to enforce for sovereign nodes is financial freedom. This stands in
contrast to financial traceability, which entails the involuntary disclosure of individuals' value
exchange activities, ultimately giving rise to a surveillance state. Our proposed system seeks to
uphold financial privacy and empower individuals to control their own financial affairs.
While our proposed system aims to prioritize financial freedom and privacy, we recognize that
some users may choose to use submissive wallets that report to a government via a design-for-
purpose intrusive plugin. In such cases, the wallet would still allow for private communication with
the government to disclose any required details about the user's financial affairs, allowing the
government to carry out its accountability activities. However, it is important to note that this would
be a choice made by the user, and not a mandatory requirement of the fundamental system, which is
unaware of the country or government the node is operating. However, governments may choose to
distribute a version of the wallet software that is equipped with the appropriate compliance plugin.
Regardless of whether a node is sovereign or submissive, our proposed system seeks to ensure that
no public trace of any financial activity is left that could lead to the disclosure of a user's economic
activity. Financial privacy is a fundamental principle of our system, and we aim to design and
implement it in a way that prioritizes individual autonomy and control over one's own financial
affairs.

9 Individual Sovereignty
The flat organization of nodes in our proposed system can be viewed as a resilient global system
that promotes a form of social order, where every node has sovereign responsibilities, similar to
how nations operate today. This design philosophy potentially transforms centralized planning into
a self-managed society that encourages individual sovereignty and equal distribution of power
among all nodes, rather than a centralized approach that emphasizes control and hierarchy. This

Figure 6: Alice and Bob are able to use the
anonymous personalities they have created to
interact with each other without revealing their
true identities. However, if they are subject to a
central government, they may be required to
privately disclose their personalities in order to
ensure accountability.

decentralized approach offers numerous benefits, including the creation of a resilient system that is
capable of withstanding attacks and disruptions, as well as fostering greater collaboration and
cooperation among participants. At maximum distribution configuration, our proposed system has
the potential to create a thought size of 10 Billion small individual nations, rather than a single
social order for the world, which would promote a more diverse and decentralized society.

10 Egalitarianism
The present study proposes that a distributed system, such as Plebble, can be viewed as a global
low-cost profit-making machine operated by a public business, where all participants are
shareholders. This system serves to effectively execute mass-consumption services, including
value-transfer, for the benefit of humans. By enabling all participants to become shareholders, the
system provides economic incentives for participation and fosters a collaborative environment. As a
result, the proposed system has the potential to transform the way public businesses operate and
offer low-cost and efficient solutions for mass-consumption services.
The design of the reward concept in Bitcoin, which is represented by the coinbase transaction, has
been found to be flawed. This is because it primarily incentivizes miners, who represent only a
small subset of the network, while leaving the vast majority of participants excluded from the profit
distribution. This flaw in the reward concept has been identified as a potential limitation of the
Bitcoin system, as it can result in a concentration of wealth and power within a select group of
miners. This concentration of power and wealth can ultimately undermine the decentralized nature
of the system and erode the trust of its users. Therefore, there is a need for alternative reward
mechanisms that promote a more equitable distribution of rewards among all participants in the
network.
Our proposed design for a distributed system incorporates a more egalitarian wealth redistribution
mechanism by ensuring that all profits made by the machine are redistributed to every single
participant. This approach provides a fairer and more equitable reward mechanism, as it ensures that
all participants benefit from the system's success, rather than just a select few. By promoting a more
equal distribution of rewards, our design encourages greater participation and collaboration among
all members of the network, which in turn can enhance the overall efficiency and effectiveness of
the system.

11 Wealth distribution. Poverty.
In short, a suitable technology infrastructure
could involve an inexpensive automated public
system that uses a distributed network to enable
widespread services such as value exchange.
Participants pool their computing resources to
enable this system, and profits are shared
among all participants. If this system becomes
widely adopted, it could lead to the realization
of a Universal Salary concept, at least in principle.
The implementation of such a public service could indeed be a potential solution to address poverty
and contribute to a more flourishing civilization. By providing a universal salary or basic income
through the redistribution of profits generated by the distributed machine, individuals would have
the financial means to participate and contribute their talents to society without worrying about
basic needs such as food, shelter, and healthcare. This could lead to a more equitable society where
individuals are able to pursue their passions and ideas without being held back by financial
constraints.

To achieve readiness status, which means being
ready to positively contribute to society,
individuals must have access to fundamental
necessities such as a home, heat, health, food,
computer, and broadband. If any of these
necessities are missing, participants cannot
maintain their readiness status and may become
a burden as they must focus on addressing
personal needs rather than contributing to
solving larger societal issues. This is
particularly relevant as we face significant challenges as a species, including the threat of extinction
from sources like asteroids, pandemics, plagues, and human suffering. Therefore, ensuring that
individuals have access to these basic needs is essential to maximizing their potential to contribute
to society's greater good.
While promoting financial freedom and encouraging everyone to become economically prosperous
by servicing others is important, it is also essential to have a social safety net that does not rely on
violent schemes like taxation. A system that solely relies on taxation can potentially lead to unequal
distribution of resources and may not fully support those who need it the most. It is crucial to design
a system that can provide a social safety net for all individuals, regardless of their financial status,
in a way that does not rely on coercive measures. By promoting a system that supports the well-
being of all individuals, we can help ensure a more equitable and just society.
This safety-net can be built on the basis of distribution of profits collected from transaction fees
among all participants, constituting a spontaneous form of universal salary. If only financial
services, or in general services covering basic rights like value-transfers, are carried out in such a
way it would help to raise the poverty threshold, perhaps up to readyness levels.
Creating a system that can be operated with low-cost nodes is crucial to enable easy onboarding for
individuals who may be experiencing financial difficulties.

12 Liquid economy. Streams.
Money, as a fundamental unit of modern economies, has been studied extensively from different
perspectives. In this paper, we explore two distinct models of money: the fungibility model and the
fluid dynamics model. The fungibility model views money as an aggregation of indistinguishable
units of account, while the fluid dynamics model treats money as a liquid governed by fluid
dynamics laws.
Fungibility Model
The fungibility model of money assumes that money can be viewed as an aggregation of
indistinguishable units of account, such as 1 sat or 1 cent. This model enables value exchange
through transfers of fixed amounts between accounts. Under the fungibility model, each unit of
account is interchangeable with another, allowing for seamless and efficient transactions. This
model has been widely adopted in traditional financial systems and serves as the backbone of most
modern economies.
Fluid Dynamics Model
Alternatively, money can also be modeled as a
liquid, where the principles of fluid dynamics
govern its behavior. This model treats money as
a continuous flow, allowing for dynamic and
flexible transactions. A powerful programmable
money system can be designed based on
streams, where money flows from one account
to another based on predetermined rules. The
fluid dynamics model of money enables the

Figure 7: Current and target (desired) models of
wealth distribution. Illustrative. Every human
being has their position in the X axis with their
relative acquisiton power on Y.

Figure 8: Fluid money modeled as either
electrical current (electrons being unit of
transfer) or incompressible water (units of
volume).

creation of complex financial instruments and the automation of financial transactions, which can
enhance efficiency and flexibility in building complex economic circuits.
Both models have been used to design effective financial systems, and their combination may offer
even greater potential for the future of money.

13 Decentralization.
Decentralization is a general approach that can provide resilience, prevent single points of failure,
and enhance censorship resistance. This strategy can be employed in various domains, such as
finance, computing, governance, and energy, among others.
When considering network topology, the goal is to create distributed systems that consist of as
many independent nodes as possible. Similarly, when it comes to governance, the objective is to
have numerous independent decision-making entities. This is particularly important when
implementing software upgrades. The human brain can serve as an example of a distributed system,
with interconnected neurons working in a control loop. These neurons continually read and respond
to external stimuli. A single neuron's failure does not result in brain failure, and the decision-making
of an individual neuron does not necessarily reflect the final response of the brain.
The idea of a single global coin implies a sense of centrality, as it suggests that this coin would be
used to account for all values in the world. However, this approach oversimplifies the diversity of
values that exist, and many values would be misrepresented or overshadowed by others. Instead, we
propose a formula where each coin represents a single value. For billions of values, we would use
billions of coins, thereby avoiding the problems that arise from reducing all values to a single
currency.
Our objective is to achieve the highest possible distribution across all aspects, including
geographical, governance, control, down to node resolution, and even software update production
and deployment. We also aim to incorporate cryptoeconomics, with the inclusion of personal central
banks and local coins, to further enhance decentralization and promote a more equitable distribution
of resources.
Our approach is to leverage the insights and knowledge gained from research studies in various
fields related to distributed computing. These include studies on P2P networks and routing protocols
[58-67], swarm intelligence in robotics and IoT [12], as well as consensus algorithms such as BFT,
PoW, PoS, and others. By incorporating these learnings, we aim to design a more robust and
resilient system that can effectively handle the challenges associated with decentralized networks.
Swarm networks, which take inspiration from the behavior of various animal species such as flocks
of birds, schools of fish, armies of ants, or swarms of bees, have numerous applications across a
range of fields, including economics, robotics, self-managed societies, distributed governance, and
more. These networks are particularly valuable for their unique properties, which include resilience
against predators, environmental factors, and individual failures. By incorporating these principles
into our design, we aim to create a more robust and adaptive system that can effectively handle the
challenges associated with decentralized networks.
In designing our research protocols, we draw inspiration from concepts that prioritize individual
autonomy and sovereignty. These concepts recognize that individuals are, first and foremost,
anonymous and independent agents, and should only enter into voluntary arrangements, such as
hierarchical associations or government structures, on their own terms. By prioritizing individual
sovereignty, we aim to create a system that is truly decentralized, allowing individuals to participate
freely and autonomously, without the need for centralized control or authority.

14 Open system
The Plebble principles, which include The Five Pillars of Open Blockchains [11], emphasize the
importance of creating systems that are open, borderless, neutral, censorship resistant, and
immutable. Our goal is to design a system that embodies these principles, allowing anyone to
participate without the need for vetting, registration, or accountability by a third party. This property

is commonly referred to as permissionless, which means that anyone can join and use the system
without seeking permission or approval from a central authority.
In the context of blockchain technology, immutability refers to the inability to alter or modify
transactions once they have been recorded, thereby preserving the integrity of the data and
preventing falsification of the truth. This concept does not necessarily relate to the specific method
used to store transactions as a chain of blocks, which has been associated with the Bitcoin design.
The correlation between immutability and the use of digital signatures and PoW in the Bitcoin
design has led to some confusion, as this approach can become non-scalable as nodes sync times
rise over time. In the Plebble system, it is easy, cheap, and fast to create a blockchain. However, it is
difficult to change the legitimate blockchain once it has been agreed upon, ensuring the
immutability of the data.

15 Cryptoeconomics. Supply cap.
In a future where a multitude of different coins coexist, it becomes apparent that it is impossible to
represent the global economy with a total of 21 million tokens, as originally intended in Satoshi's
design. The creation of new tokens is unavoidable, unless the entire world population voluntarily
agrees to a single system. This is a major conceptual difference between cryptocurrencies and
legacy currencies issued by central authorities, where users cannot lawfully print money.
As a result, a deflationary cryptocurrency, with a supply cap or upper limit on the amount of new
coins that can be created, is not globally effective in the presence of many more systems. This is a
flaw in Satoshi's original vision. It is safe to assume that cryptocurrencies, as a whole family, have
unbounded inflation as a natural trait, as the ability to create new tokens is necessary to support a
growing economy in the long term.

16 Lightweight nodes
Making simple designs is one of the biggest challenges, but we believe it is crucial for creating a
successful and resilient protocol. Many level-1 (L1) blockchain protocols have multiple types of
nodes with different responsibilities or roles, such as miners, verification nodes, and SVP clients
delegates. However, we aimed to simplify the system by using only one type of node. Additionally,
we wanted to allow any user to participate using any computer, regardless of its computing power.
The distributed system should be composed of a wide range of configurations and sizes, including
RAM, CPU, storage, and bandwidth, with the lowest possible minimum requirements. For example,
we used the Raspberry Pi, a tiny computer, as a reference hardware for this project.

Less is More

- architect Ludwig Mies van der Rohe. 1947

17 Scalability.
Consensus on a common truth is one of the major challenges faced by blockchain networks.
Bitcoin's common truth is the utxo set, while Ethereum's is a state vector, both produced by a
consensus algorithm. However, current designs have limitations in achieving consensus when the
ledger size or number of participants increases, leading to performance or security issues [23].
Accounts.
The traditional blockchain concept includes a database model that includes all used accounts, such
as the utxo set. However, this design has limitations when it comes to scalability. The financial
activity of an individual living on the other side of the world may not be related to or relevant to my
own financial activity, and therefore can be considered as two completely separate and independent
histories. In other words, not every participant in the blockchain network needs to have access to all
information.

Node resources.
To achieve a network of billions of nodes, it is crucial to design the network in a way that scales in
an O(1) basis. This means that every new node added to the network should not increase the
overhead on CPU, RAM, or bandwidth for every other existing node. In other words, the growth of
the network should not negatively impact its performance or security. This is a significant challenge
in designing decentralized systems that can accommodate a large number of participants without
compromising their scalability or security.
The following technical discussion addresses these issues.

--End of Part I--

Part II. Design.

1 Overview.
The Plebble system is both a social challenge
and a technological development. The
subsequent sections will delve into the
technical intricacies, design decisions, and
patterns underlying the Plebble system.

2 Cryptography.
Plebble uses cryptographic functions that employ the Elliptic Curve secp256k1 [2], with a
replaceable design. This means that once it is no longer considered secure (e.g. due to quantum
computing), replacing it with the next secure algorithm should be straightforward as the design is
prepared for such maintenance since the beginning.
Plebble also has the capability to support several technologies simultaneously, enabling a gradual
transition and user selectability of the preferred algorithm.
It is worth noting that secp256k1 has been protecting Bitcoin [3] since 2009 and is still considered
secure as of 2023.
Public Key Infrastructure (PKI).
PKI is a system that provides a secure method for exchanging digital information over the internet,
using public key cryptography. It is a hierarchical system that involves the use of digital certificates
and public key encryption to enable secure communication between parties.
A PKI system typically consists of a Certificate Authority (CA), which issues digital certificates to
entities, such as individuals, organizations, and devices. These certificates contain the entity's public
key and other information, such as the entity's name and digital signature of the CA.
When two parties communicate, they exchange digital certificates, which are used to establish a
secure channel for communication using public key cryptography. This means that each party has a
public key and a private key, and the public key can be shared with others, while the private key is
kept secret.
The PKI system is widely used for securing online transactions, such as e-commerce, online
banking, and secure email communication. It provides a strong level of security and trust, as the
authenticity of the digital certificate can be verified by the CA, which is a trusted third-party entity.
It is also a crucial component in the development of verifiable credentials [4], which enable the
creation of decentralized trust networks.

3 Processes.
The node system consists of two
subsystems, each of which handles public
and private affairs separately.
A subsystem consists of two processes that
run on their respective operating systems,
one for the front-end and one for the back-
end.
The primary function of the front-end subsystem is to provide a Human-Machine Interface (HMI),
which collects inputs from users through either a Graphical User Interface (GUI) or a command-line
text console (CLI). These front-end applications communicate with a remote backend where the
business logic is stored. The main responsibilities of the front-end subsystem are to capture human
input and display feedback.

Figure 9: control/display pattern.

The backend daemon process is a resident
program that is responsible for executing all the
designated tasks that belong to the core
business logic. It is controlled by the front-end
application through an Application
Programming Interface (API) that is
implemented over TCP/IP socket connections.
The Plebble node backend is comprised of two
separate daemons, each corresponding to a
distinct logical view of society: public matters
and private matters.

• gov daemon. This subsystem contains
all the concerns related to Public
Matters. Transparency is paramount in
the Governance Protocol for the Public
System.

• wallet daemon. The Private System
contains all concerns related to user
privacy, data monetization, personal
interests, and trade, and emphasizes user
sovereignty. The wallet protocol in the
Private System places paramount
importance on opacity to ensure user
privacy.

4 API
As part of the design, it is crucial to have a maintainable API specification that facilitates flexible
and seamless updates.
Apitool.
Apitool is part of our development tailored for this project. The tool is custom-made API code
generator is used to automate API maintenance [53]. It is an API-spec compiler that takes function
specs from human editable master files as input [54], producing the following output:

• service numbers, or numeric identification of functions [55].
• API versioning. API version number increments on every network upgrade if needed using

detection of API changes during the development since the last upgrade.
• Translation from/to previous API versions for runtime compatibility between nodes

implementing different API versions (svcfish).
• C++ and Java source files:

◦ datagram activity counters for instrumented builds.
◦ Svcfish service map include file.
◦ RPC call implementations.
◦ Implementation prototypes for API functions.
◦ Data Transfer Objects (DTO).
◦ Message routing implementation.

• Latex sources for API documentation.
The configuration scripts in the Plebble system include the integrated Apitool, which automates the
process of adding, removing, or editing the API spec. This ensures that updates to the API can be
made flexibly and effortlessly without requiring manual intervention from developers, except for
implementing new functions or removing deprecated ones.

Figure 10: Nodes belonging to different users
are part of two distinct P2P networks, namely
Gov and Wallet, corresponding to the Public
and Private systems, respectively. The daemons,
Gov and Wallet, communicate with each other
through different protocols. Gov-daemons
interact with other gov-daemons via the gov-
API, whereas wallet-daemons communicate with
other wallet-daemons through the wallet-API.
Communication between wallet-daemons is
encrypted to ensure the privacy and security of
the user's data.

The tool is extensible by design with the possibility of adding new target languages, specially for
developing new front-ends, like WASM, C# or javascript.
All Remote Procedure Call (RPC) function calls are optimized for efficiency using binary encoding
in datagrams for serial multiplexed transmission. This design choice avoids any higher-level,
human-readable encapsulations such as XML or JSON, which are less efficient.
Developers or users can choose to receive results in text, XML, or JSON formats by specifying the
output mode. However, this may incur additional overhead in their front-end computers. Such
overhead is usually negligible, and does not have any impact on network communications
efficiency.
Plebble specifies two APIs one for each subsystem: gov-api and wallet-api, which are detailed
below.

5 Datagrams.
Plebble utilizes a customized binary protocol that
runs over the TCP/UDP/IP protocol through
standard sockets for any data transmission
between nodes. The transmitted data is known as
a datagram, which is a structured data with a
simple layout consisting of two sections: a fixed-
size header (10 bytes) and a variable-sized
payload [27].
Multibyte fields are all encoded in little-endian.
Channel.
The 2-byte field channel is used to allow different networks coexist in the same IP address space.
If two nodes are configured on different channels and try to connect, they would simply fail to
establish a connection and disconnect without any further interference.
Special channel numbers are used to define different networks:

• Channel 0: the Plebble mainnet.
• Channel 1: testnet.
• Channel 2: LAN isolated network

Channels 0 and 1 (mainnet and tetnet) are open and permissionless. Channel 2 is designed to be
used in development environments.
Other variations such networks with alternative topologies (e.g. ring, star), private networks for
organizations and businesses, with or without permissioned nodes controlled by a central authority,
all of them would be able to run together in the same IP space by selecting a unique channel number
for them.
Service number.
The 2-byte field service (svc) consists of 2 bytes and is utilized to classify or assign significance to
the trailing payload field. Its purpose is to map to a function in the protocol API definition [28],
which specifies how the payload should be interpreted, including its maximum expected size. For
instance, security checks, such as discarding payloads for type "x" that exceed a size of "y," are
performed. Additionally, during reception, if the payload exceeds the declared payload size (the
second field in the header), the connection is terminated, and a separate algorithm is notified. This
algorithm is responsible for profiling peers based on their behavior, attempting to determine
whether they are malicious or trustworthy.
Sequence.
The field sequence (seq) is a 2-byte number used in concurrent API function calls/responses for
multiplexation control.

Figure 11: Byte layout and fields of a
datagram, or data structure representing bits
on wire.

Payload.
Upon the arrival of each datagram, the header is
examined as soon as the first 10 bytes are
received. Based on this analysis, a decision is
made whether to proceed with reading the
datagram or drop the connection altogether.
Once the complete datagram is received,
additional security analysis is conducted, which
includes implementing throttle control to
prevent abuse, such as trolling.
In the field service, the value of 0 has a special significance, indicating that the payload is an
encrypted datagram intended for transmission.
Encryption is utilized to protect data from eavesdropping or tampering while it traverses the wire,
particularly when the protocol is private, such as in the case of communications between wallets
(private systems) or between display and control front-ends and daemons.
The upper logic layers are responsible for determining whether each datagram should be encrypted,
depending on various factors such as the service number. For instance, if a datagram is a response to
an encrypted call made by the peer in an encrypted form, the response would also be encrypted
accordingly.
Encryption is accomplished using the algorithm AES(128bit) supplied by libcrypto, with salted
rotating keys.

6 Antier. Anonymization overlay.
Datagrams can find their way out to the network via two mechanism configured by the user.

• TCP/IP: datagrams would be delivered immediately, thereby exposing the IP address of the
node and making it vulnerable to traffic analysis. This approach provides a moderate level of
pseudo-anonymity and is appropriate for users who don't mind publicly declaring that a
Plebble node is present on their IP address.

• Antier. In this optional mode, datagrams are routed through onion-routing, a technique
similar to the one used in the Tor Network, before reaching their destination. This approach
offers protection from traffic analysis, node geolocation, and ultimately protects against
doxing. It includes features like chaff traffic but comes at the cost of higher overhead in
computational costs and transmission delays.

7 Handshake.
Once a connection is established, a verification
process is initiated, which involves exchanging three
datagrams in a 3-way handshake process.

The handshake process results in the unique
identification of the remote peer. This process is
cryptographically protected against false
impersonation.
As additional information, they also exchange their
role and preferences during the verification process.
The role is used to determine further logic and can
either be a node (an untrusted peer) or a device (a
trusted peer for visualization and control, such as a
console or GUI app).

Figure 12: After decrypting an encrypted
datagram (svc 0) a readable datagram is
obtained.

Figure 13: 3-way authentication. Nodes
exchange tracking id (public keys) using 3
datagrams.

In a node-to-node connection, routing tables are exchanged and updated, and the presence of other
nodes in the network is spread through routine activities.

8 Addresses/Accounts.
An address is a fixed 20-byte wide identifier obtained from a public key, using a one-way hash
function [10]. The default implementation uses RIPE Message Digest, or RIPEMD160, algorithm
[5] as the general purpose hashing algorithm.
Addresses in Plebble are exclusively controlled by individuals in possession of their corresponding
private keys. These addresses are used to identify user accounts and private keys grant holders write
privileges in the corresponding account.
To avoid typing errors in address input, other systems may encode CRC checks in the final address
format. However, this approach can be resource-intensive for the backend and its effectiveness is
questionable, as address input errors are not a common occurrence in practice.
base58 encoding has been chosen for encoding addresses in Plebble, primarily because it allows for
easy copy and paste operations without the risk of mistyping due to confusing characters. Base58
encoding uses only alphanumeric characters excluding the ones that are easily confused with each
other, such as 0 (zero) and O (capital letter), 1 (one), l (lowercase L), etc.
Furthermore, base58 encoding is more compact than base64 encoding which includes special
characters, thus reducing the length of the encoded address. This makes it more user-friendly for
display in front-end applications and also more efficient for storage and transmission over the
network.
Users can create private accounts locally, which can then be shared with other nodes in private
communications such as trades. Alternatively, accounts can be shared read-only with the network,
allowing for public ledger queries. These accounts serve as generic data containers that can be used
for a variety of purposes, including storing the state of Public Algorithms, also known as Smart
Contracts in other systems.
Accounts/addresses are managed by the wallet. Privacy wallets are components responsible for safe
guarding user’s privacy during ongoing trades.
The wallet has various responsibilities, including but not limited to crafting, signing, and
broadcasting transactions or messages, managing private keys and other secrets such as pictures,
writings, or medical records, and keeping track of the user's account balances and transaction
history. Additionally, wallets provide functionalities like managing multiple accounts, generating
new addresses, and interfacing with different blockchain networks.
Addresses are Non-Fungible tokens, broadly known as NFT. They can contain:

• A special filesystem that uses unique paths and names the content after its hash. This is
particularly useful for accessing files with changing content, such as software components
distributed via blockchain addresses, trackers, or logs used in IoT and logistics, as well as
NFT metadata. The ledger only stores the index, while the actual file contents are stored in a
distributed hash table with a 160-bit key space, similar to that of addresses.

• Data maps, or key-value tables.
• Coin balances.
• Connection strings and indirections, e.g. name resolver or a converter that maps a wallet ID

to an IPv4 address.
Additionally, addresses are Fungible tokens, also known as coins.
Any user can create coins and run local economies with them, just like Central Banks create money
for global economies, by simply creating addresses and defining supply and inflation/deflation
rules, which can be defined with a program or manually updating the supply with API calls.
It goes without saying that only the individual possessing the private key has control over the
associated coin supply or any other associated content.

9 Network topology: cliques and Shards
To achieve optimization for consensus, self-
organized groups of 32 nodes called cliques-L0
are formed. These cliques are designed to be
sybil-resistant due to their fixed size. As a
background activity, cliques engage in consensus
rounds by synchronizing their relevant
knowledge based on evidence. This is achieved
through a signed message passing Byzantine
Fault Tolerant (BFT) algorithm, which is
particularly efficient for small participant groups.
The responsibility of securing a fraction of the
address space is assigned to a specific clique.

We define 7 fractal levels (0 to 6). The first 2
Fractal Levels (0, 1) form shards. One shard is
then run by 1024 nodes.

10 Filling algorithm
At the start of a new network, there is only one
genesis node. However, the system is fully
operational in this configuration, with the node
actively listening for evidences and constructing
a blockchain that encompasses the entire range
of addresses (2^160 addresses). Routing tables
are empty.
A one-node system is centralized and weak, and
is not scalable in terms of throughput or address
capacity. Despite its limitations, the one-node
system serves as a starting point for
decentralization as more nodes join the network.
Once a second computer connects to the
network, it is added to a waiting list called the
hall. This temporary registry is used to randomly
select candidates for configuring the consensus
topology. Eventually, the second computer will
be chosen and added as the second node to the
network.
The process continues as a third node connects
to either of the existing two nodes and follows
the same process to be added to the network.
This process is repeated for the fourth node, and
so on, until the 32nd node joins the network.
Once the 32 nodes are connected, FL0 is
complete for the first ring of nodes. The next
node to join the network will start forming the
second ring of nodes.

Figure 14: Fractal organizational layout for
consensus showing cliques from Fractal Level
FL0 (32 nodes) to FL3 (1M nodes). FL6 has a
capacity of 34.359.738.368 nodes, ~4.3 nodes
per person in the world. FL2 (middle box)
contains 32 shards.

Figure 15: 32 nodes forming one FL0 consensus
ring, with an incomplete mesh topology of 3
connections each. They are in charge of
building a blockchain based on evidences.

The process of adding nodes to the network
continues until the 32nd ring is completed. This
constitutes the first shard, with a total of 1,024
nodes across 32 rings. Each ring builds a
redundant replica of the ledger, resulting in 32
replicas where each node encompass the entire
address range.
The arrival of the 1,025th node marks the start
of the second shard and the division of the
address space.

At this point, the resulting shards operate at
half of their redundancy capacity. The first
shard builds redundant blockchains, consisting
of 16 complete rings plus one node starting the
17th ring. This shard is responsible for
addresses in the first half of the address space,
i.e., the addresses in the interval [0, 2^160/2]. It
will continue to add 31 more nodes to complete
the 17th ring. The second shard is responsible
for accounting for the other half of the address
space.
As new nodes are continuously added to the
network, once a shard is filled, a new
reorganization takes place, partitioning the
address space into new shards. This process is
repeated as shards are filled and then
partitioned again.
As each shard is filled, it results in a new split
of the address space and the addition of a new
active shard. This process continues until FL2
is fully formed with 32 shards, each one
managing 1/32 of the address space.

The process of partitioning the address space
and filling fractal levels continues as long as
new nodes continue to join. The network
expands to cover more and more nodes,
reaching up to FL7, where over 10 billion
nodes work together to secure the entire
address space.

Figure 16: Nodes have connections to other
nodes in their L0 clique (gray lines), plus nodes
in their L1 clique (black lines), plus nodes in L2,
L3, ... L6 cliques (not shown).

Figure 17: One shard is made of 1.024 nodes
organized in 32 identical blockchains
(replicas). Each replica is built by 32 nodes
agreeing through their FL0 connections (gray
lines). Black lines correspond to FL1
connections. FL1 connections of one particular
node is shown in red.

Routing.
To accommodate a target of 10 billion nodes, a 32-dimensional linear tree with a height of 7 is the
logical organization. This tree is spontaneously balanced, as the allocation process depends on the
random nature of the node public key hash.
It's worth noting that this logical organization doesn't result in centralization because it doesn't
involve arranging nodes in layers with a central orchestrator at the top of the hierarchy. Instead, it's
a logical search tree that assists in finding the optimal route for transmitting messages to any desired
shard.

Figure 19: Existing nodes are re-arranged into
two shards filled at half capacity. New nodes fill
them up before a new split takes place.

Figure 20: This sequence illustrates the shard splitting process from top
to bottom. Each active shard is represented by a black rectangle, with a
visual indication above it representing the range of addresses managed by
the shard in the form of a black bar.

Figure 18: FL2, with a capacity 32 shards, is
filled up until completing the first shard with
1.024 nodes arranged in 32 rings). Since at this
point there exist only one shard it handles all
possible addresses.

11 Encoded coordinates.
The node's public key hash, also known as its
address, can serve as a basis for establishing a
coordinate system.
This means that the node address or hash can be
used to determine the appropriate shard for
processing, storing, or retrieving a digital asset.
Depending on the number of active fractal levels, it can also be determined whether the asset should
be routed for processing by other nodes.
The following calculations will be based on an example node address represented in base-58
encoding as acbxmzYuAhGuHdH2F4NLavDZ5Yo. To obtain a 20-byte vector V representing this address, we
can use a base58 decoder.

Scenarios, as network grows in size:
• FL0; FL1-6 are inactive; Network size is 32 nodes or less.

All nodes work on a single blockchain (ring 0) accounting for all possible addresses.
The clique manager, explained below, would connect to (at least) 3 other nodes picking them from
the routing table for FL0.
The concept of coordinates doesn’t apply in FL0, as every node is in the same ring.

• FL1; FL2-6 are inactive; Network size is between 32 and 1.024 nodes.
Nodes are organized in numbered rings from 0 to 32. In FL1 the number R is an agreed number
representing the number of active rings, and it grows as new rings are created on the journey from
32 to 1.024 nodes.
Nodes can determine which ring they are working on by taking the 5 least significant bits of the last
byte (V[19]) of their decoded address and taking the modulus of the total number of rings, R.
The modulus operation is used to temporarily allocate nodes to available rings. Nodes that naturally
belong to not-yet-enabled rings are temporarily assigned to available rings using the 5 least
significant bits of the last byte (V[19]) of their decoded address, which is calculated using the
modulus R. If the value of R becomes greater than or equal to V[19]&31, and mod R doesn't result
in a cycle, these nodes are re-allocated to their appropriate ring.
For example, let's consider a network with 106 nodes and a value R = 4 (1+floor(106/32)). By
convention, the raw value for the ring coordinate is stored in the last byte of the address, which is

Figure 22: The same tree example (D=2, H=4)
demonstrates how each node manages the tree to
route messages (from FL2 to FL6) and ensure
redundancy (in FL0 and FL1).

Figure 23: vector V resulting from
base58_decode("acbxmzYuAhGuHdH2F4NLav
DZ5Yo");

Figure 21: An example of a D-Dimensional
tree, also known as a k-d tree [31], is shown in
the illustration below. The tree has a
dimensionality of D=1, with 2 children (2^1),
and a height of 4. Fractal levels (FL) are
organized in a similar tree, but with D=5, 32
children (2^5), and a height of 7.

100 in our example. To get the last 5 bits of V[19], we need to compute V[19] & 2^5-1, which gives
us 100. Finally, we compute the node coordinates using (X mod R), which results in {ring = 0}.
Therefore, this node belongs to ring 0.
The clique manager uses its routing table for FL0 to connect to nodes in the same ring. The routing
table contains other node addresses and helps the clique manager to locate and establish connections
with other nodes in the network.

• FL2; FL3-6 are inactive; Network size is between 1.024 and 32.768 nodes.
Rings are organized in numbered shards from 0 to 32. In FL2 the number S is an agreed number
representing the number of active shards, and it grows as new shards are created on the journey
from 1.024 to 32.768 nodes.
V[18] contains by convention the raw input for the shard coordinate. V[18] = 144, and V[19] = 100.
Our example node is building a blockchain where e.g. S = 13. Then, {shard, ring} = {(144 & 31)
mod 13, 100 & 31}; hence this node has coordinates {shard=3, ring=4}.
The clique manager would connect to (at least) 3 nodes of the same ring and other 3 nodes in the
same shard, picking them from the routing table for FL0 and FL1 respectively.

• FL3; FL4-6 are inactive; Network size is between 32.768 and 1.048.576 nodes.
Shards are organized in numbered knots from 0 to 32. In FL3 the number K is an agreed number
representing the number of active knots, and it grows as new knots are created on the journey from
32.768 to 1.048.576 nodes.
V[17] contains by convention the raw input byte for the knot coordinate, V[17] = 68, V[18] = 144
and V[19] = 100. Our example node is building a blockchain where e.g. K = 14.
Assuming FL1 and FL2 are full (no existing nodes have left their rings), if K = 14 our node has
coordinates {knot, shard, ring} = {(68 & 31) mod 14, (144 & 31) mod 32, (100 & 31) mod 32}; so
coordinates are {knot=4, shard=16, ring=4}.
The clique manager would connect to (at least) 3 nodes of the same ring, plus other 3 nodes in the
same shard, plus 3 nodes in the same knot, picking them from the routing table for FL0, FL1 and
FL2 respectively.

• FL4; FL5-6 are inactive; Network size is between 1.048.576 and 33.554.432 nodes.
Knots are organized in numbered clots from 0 to 32. In FL4 the number C is an agreed number
representing the number of active clots, and it grows as new clots are created on the journey from
1.048.576 to 33.554.432 nodes.
V[16] contains by convention the raw input for the clot coordinate. V[16] = 221, V[17] = 68, V[18]
= 144 and V[19] = 100. Our example node is building a blockchain where e.g. C = 7. Assuming
again FL0, FL1, FL2 and FL3 are full, if C = 7 our node has coordinates {clot, knot, shard, ring} =
{(221 & 31) mod 7, (68 & 31) mod 32, (144 & 31) mod 32, (100 & 31) mod 32}; so coordinates are
{clot, knot, shard, ring} = {1, 4, 16, 4}.
The clique manager would connect to (at least) 3 nodes of the same ring, plus other 3 nodes in the
same shard, plus 3 nodes in the same knot, plus 3 nodes in the same clot, picking them from the
routing table for FL0, FL1, FL2 and FL3 respectively.

• FL5; FL6 is inactive; Network size is between 1.048.576 and 33.554.432 nodes.
clots are organized in numbered clusters from 0 to 32. The number of active clusters is found in the
consensus variable L.
Knowing that V[15] = 78, assuming L = 12 and following the same reasoning, coordinates for our
example node would be:
{cluster, clot, knot, shard, ring}={2, 1, 4, 16, 4}

• FL6; Network size is between 33.554.432 and 1.07 billion nodes.
clusters are organized in numbered banks from 0 to 32. The number of active banks is found in the
consensus variable B.
Knowing that V[14] = 242, assuming B = 3 and following the same reasoning, coordinates for our
example node would be:
{bank, cluster, clot, knot, shard, ring}={0, 2, 1, 4, 16, 4}

Similarly, further fractal levels can be defined in a similar way in order to welcome and allocate
more nodes. FL7 would enable a capacity of 34.36 billion nodes.
Summarizing the organizational levels, these are node, ring, shard, knot, clot, cluster, and bank.
Each one contains 32 instances of the previous.
In a scenario where all 7 levels are utilized, the address space, which contains 2^160 addresses, is
partitioned into approximately 33.5 million (32^5) partitions. Each partition is managed by its
corresponding shard. An address is a 160-bit number, which can be represented by a decimal
number with up to 48 digits.

12 Routing
Routing tables are a collection of references to other nodes that serve the purpose of establishing
new connections. These tables are classified based on their fractal level (FL).
In this design, there are up to seven routing tables corresponding to FL0 to FL6. Each node
maintains these tables individually and updates them on each peer-to-peer connection in a best-
effort knowledge-sharing basis.
Every node would have a limited number of entries in each routing table, which are used by the
clique manager to establish new connections for two primary purposes:

• routing protocol datagrams to the correct shard.
• Sharing evidences and performing consensus rounds within a shard and its rings.

RTFL0
The routing table for fractal level 0 is a fixed size list with 31 entries. Each entry contains:

• Node id (public key hash).
• IP Address.
• TCP port (default port is 16672).

It is used by clique manager to connect with at least 3 random nodes for its FL0 connections.
RTFL1
The routing table for fractal level 1 is a fixed size list containing 31 entries:

• ring. Universal unique id (uuid) identifying other blockchains in the shard.
• A fixed size list with 32 entries:

◦ Node id.
◦ IP Address.
◦ TCP port.

Nodes working on the same blockchain as the node holding this routing table are excluded, since
they are already in RTFL0.

Routing tables FL0 and FL1 are part of the shard consensus.
RTFL2 – RTFL6
These tables contain structures similar to RTFL1.

Routing tables are constructed through ongoing information exchange during node connections, and
are designed to remain at reasonable sizes through algorithmic management. While they contain a
generous number of entries, they are not expected to store all possible entries, as doing so would not
be scalable in terms of storage capacity.

13 Clique manager.
The clique manager (CM) [29] is a crucial component responsible for maintaining stable
connections with other nodes. These connections can last for hours or even days and serve to build a
solid network for routing, evidence relay, and consensus.
Periodic changes to connections are introduced at random intervals through a process called
mutation. This helps to randomize the participants and reduce the probability of collusion, which is
a malicious activity performed by rogue nodes that can disrupt consensus.

Collusion is a harmful node behavior that can be
carried out by malicious actors who modify the
protocol with the intention of compromising the
network (adversaries).
The CM would terminate current connections
and establish new ones by randomly selecting
connection setup parameters such as IP address
and TCP port from the entries in the routing
tables.
CM maintains at least 3 stable connections for
each fractal level.

14 Storage of digital assets.
RIPEMD160 hashing can be used to reduce any
piece of information into a fixed-length 20-byte
vector of bytes, which is known as the asset ID.
In the "Encoded coordinates" section, we learned
how to derive coordinates from node addresses.
The same process can also be applied to any digital asset by first converting it into a 20-byte vector
using RIPEMD160 hashing, which can then be used as the asset ID.
Coordinates {bank, cluster, clot, knot, shard, ring}can then be obtained for any asset-id.
Since all rings in a shard are designed to provide redundancy, the last coordinate "ring" can be
omitted when obtaining coordinates {bank, cluster, clot, knot, shard} for any asset from its hash-id.
Hence, the asset is stored in all 32 rings once the asset reach a node matching the shard and
propagated.
When a new asset arrives, a node needs to decide whether to store it or forward it to other nodes.
This decision is made based on a coordinate-matching ruleset.
The clique manager manages two modes of message forwarding:

• Stable connections
• Temporary short-lasting connections.

The clique manager attempts to optimize resource
usage by maintaining three stable connections to
nodes for each fractal level out of a possible 32.
However, there may be situations where an asset
needs to be forwarded to a coordinate that is not
covered by the stable set. In such cases, the CM has
several options:

• Create a new stable connection, potentially
dropping an existing one, depending on
available computational resources.

• Create a temporary connection to the correct
node using the corresponding entry in the
routing tables, forward the message, and
then drop the connection.

• Forward the message to a node using any stable connection, even if it does not match the
target coordinate.

The clique manager (CM) decides the most suitable action based on heuristics related to available
computing resources. Apart from the stable connections, CM also has a rotating buffer of temporary
connections that can be utilized on demand.

Figure 24: The clique manager is responsible
for maintaining stable connections with other
nodes for each of the 7 fractal levels. This
means a minimum of 21 stable connections are
kept in a configuration where 7 FL are active.

Figure 25: Flow diagram illustrating the
decision making process of either forwarding
the asset to the appropriate nodes or
broadcasting it among the nodes in the
destination shard.

In the worst-case scenario where the asset doesn't match the bank coordinate, the asset would be
forwarded to the cluster coordinate using one of the three connections in FL0. From there, it would
be forwarded to the clot coordinate using one of the three connections in FL1, and then to the knot
coordinate using one of the three connections in FL2. Finally, it would be forwarded to the shard
coordinate using one of the three connections in FL3. Therefore, the asset would reach the
destination shard in 4 hops.
Once the asset has reached the destination shard, it will be forwarded to all the remaining 31 rings
in that shard. This way, all the 1,024 storage nodes in the shard would receive the asset using a
cascade broadcasting algorithm, with the help of the FL1 and FL0 connections.
Once a node is connected to the shard with coordinates deduced by the asset-id, it can query the
asset content using an API call. This API call would be sent to the node that stores the asset, which
can then retrieve the asset content and send it back to the querying node.
There are certain types of assets in the system, such as evidences and public algorithms, that require
special attention.

15 Public Algorithms.
Public algorithms (PA) serve as the Plebble equivalent to Ethereum's smart contract concept, as
introduced by Ethereum [32]. These are programs that operate based on events and can save and
load state from a chunk of bits or blob. PA is submitted to the network as a special asset, with its id
corresponding to the hash of the asset content, which is a compressed file.
Once the file is decompressed, a file tree containing source code files written in any general-
purpose language and organized arbitrarily by the developer is revealed. This tree contains a
makefile that implements standard targets to be invoked by the node to generate the corresponding
executable binaries and store them for future use.
To implement PA, the Plebble SDK must be used, which enforces the implementation of certain
interface functions, such as the evidence factory, evidence processing, and load and save state. The
asset and its state blob are stored in an address corresponding to the asset-id, i.e., the PA address.
PA can be programmed using any general-purpose backend-oriented language that is machine code
efficient, such as C, C++, or Rust. Although interpreted languages like Java, JavaScript, Python, and
Bash are possible, they are discouraged for use with PA due to their higher demand for system
resources than is strictly required.
PA executables are executed in a secure execution environment or "jail" and are never shared
among other nodes. Only the source code asset is shared.
Plebble leverages the capabilities and compartmentalization (c18n) offered by CPU architectures
that implement the CHERI architecture [6], such as ARM aarch64c.
PA publishes its own specifications for evidences, allowing users to create and broadcast instances
of them. These instances are processed to produce state changes in the PA program.
There are two types of PA: user PA (UPA) and built-in PA (BIPA). The main difference between
them is that UPA is executed exclusively by nodes belonging to its corresponding shard, while BIPA
is executed by the entire network.
BIPA is considered a mass-consumption utility, while UPA has a limited audience. It is possible that
once a UPA has proven its mass-consumption potential, it can be promoted to a BIPA. However,
this process would require a software update.
Currently, the Plebble reference implementation includes four BIPA:

Cash. It manages the banking system's accounting for accounts and coin balances.
DFS. It manages the storage of digital assets in a distributed file system.
DNS. It handles name-resolution for stable wallet endpoints (QR) that allow wallets to
change their IP address without disrupting service.
Sys. It manages software updates for the network.

16 Evidences
Evidences are a special type of asset because they are responsible for any change in the state of their
corresponding publishing PA. Evidences published by UPA are routed to and processed by nodes in
the same shard where the UPA is installed. On the other hand, evidences published by BIPA are
routed to and processed by nodes in the shard/s corresponding to the addresses they refer to.
Evidence relay.
When new valid evidences are known by any node, they are propagated to their neighbors using a
flooding algorithm, also known as a cascade or gossip mechanism in literature. The nature of this
algorithm is similar to a breadth-first search algorithm in a graph, where propagation continues only
if the evidence is valid and has not been seen before.
Evidence processing.
Once an evidence arrives at a node running its
matching PA, it is processed by the PA. After
validation, the evidence is positioned in the
timeline/s associated with the addresses/s
referenced in the evidence (BIPA) or the PA
address (UPA). Each address has its own evidence
timeline containing all evidences that contribute
to the evolution of the address state, ordered by
execution time. The evidences also form a linked list or chain, with each evidence referencing the
previous one except for the first one.
The final state of a UPA or an address is the result of applying, in order, all available evidences that
affect them. The sequence of evidences responsible for a final state of an address can be seen as an
evidence chain, which is similar to a blockchain. However, a blockchain is designed to contain all
possible addresses, which does not scale well.
The evidence chain presented here only
contains evidences affecting one address and is
completely unaware of the state of any other
addresses.

17 Transactions
Evidences published and processed by the cash
BIPA are commonly referred to as transactions
(TX) for the purpose of comparison with
Bitcoin.
Locking programs, unlocking inputs.
Each address contains a locking program,
which is executed before any attempt to change
the address state in response to evidences. By
default, the locking program is a signature
verification function. However, this can be
replaced by any function defined by the user,
such as multisig verification or a pay-to-
redeem script.

Figure 27: Addresses can be thought of as safe-
deposit boxes, with locking programs serving
as the open/close mechanisms. Just like a safe-
deposit box needs a key or combination to be
unlocked, an address requires unlocking inputs
found in transactions in order to perform any
changes to the state inside.

Figure 26: The next state of an address is the
result of applying an evidence to the previous
state.

Outline of a transaction.
A transaction (TX) in the context of the Plebble architecture is composed of one or more sections,
each of which refers to a particular coin or asset being transacted. Each section contains a list of
inputs and a list of outputs. Inputs are addresses that represent the source of the assets being
transacted, while outputs are addresses that represent their destination. In other words, a section of a
TX can be thought of as a transfer of a particular asset from one or more source addresses to one or
more destination addresses.

Only the inputs in a transaction contain
unlocking inputs that are needed to validate the
transaction. The unlocking inputs are used to
provide the necessary information to the locking
program of each input address, allowing it to
verify that the transaction is authorized to spend
the coins associated with that address.
The outputs in a transaction don't need
unlocking inputs, as they are simply defining
new destinations for the coins being transferred.
However, each output does include a reference
to the address it is associated with, and that
address's current state is updated with the new
output as a result of the transaction.
Additionally, each output includes an identifier
for the evidence that created it, allowing the
history of the coins being transferred to be
traced back through the chain of evidences
affecting the address.
The sum of the inputs should be equal to the
sum of the outputs, otherwise it will be rejected
by the network. This is because the network
wants to ensure that no new coins are created
out of thin air or that coins are not destroyed. It
ensures the validity of the transaction and the
consistency of the ledger.
In the Plebble network, the fees are not decided by the users. Instead, the consensus algorithm
automatically calculates the fees based on the complexity of the transaction and the current network
load. The fees are then distributed among the nodes that process the transaction. This approach
helps to ensure that the fees are fair and that the network remains stable and efficient even during
times of high demand.
Transactions include a sigcode. To clarify the language, the sigcode in transactions is actually called
the "signature code" and it allows users to specify which combination of inputs and outputs should
be signed. This allows for flexibility in how transactions are constructed, including the ability to
partially sign and send incomplete transactions to other parties for completion. This process can be
repeated until the transaction is complete and ready to be broadcast to the network.

18 Consensus
Within the shard, as part of the consensus protocol, every node:

• Agree which other nodes are working on which blockchain replica (ring).

Figure 28: Outline of a plebble transaction.

• Enforce IP address uniqueness for every participant in the shard.
• Enforce node onboarding rules, including a waiting list (hall).
• Agree on the pace of admission of new nodes (as part of evil/honest ratio control).

Such conditions are designed to observe an average proportion 80% honest / 20% evil.
This ratio comes from applying the Pareto principle to roughly determine the proportion of evil
people in the world. The system shall be resilient under such condition.
In order to build a system from zero with a honest/evil proportion of 80/20 at a controlled pace, e.g.
1 node per minute, we fill a big waiting list of candidates (hall priming) and then onboard nodes
randomly picking from it at the chosen pace.
The design leverages the scarcity and cost associated with IPv4 addresses for sybil control.

19 Wallet
The term "wallet" refers to multiple components within the design that need to be distinguished
based on context:

• The wallet subsystem includes all aspects related to key management, privacy, and trade
automation.

• A user process is responsible for maintaining the user's privacy, safety, and interoperability.
• An online interactive agent that serves as a personal hub for dealing with society.
• The wallet daemon backend process containing algorithms for crafting evidences, e.g.

signing monetary transactions, and safeguarding user secrets, e.g. private keys.
• The wallet front-end process.

There are two processes that represent the runtime wallet subsystem: a daemon and RPC clients.
For developers, Software Development Kits are provided for extending the different subsystems.

20 Wallet – SDK
Front End
The plebble-wallet Software Development Kit (SDK) is available in various programming
languages to support the creation of new application front-ends that connect to the wallet daemon
(back-end). The wallet SDK for each language provides an implementation of the wallet API and
allows for easy extensibility, including synchronous and asynchronous function calls, handlers, and
custom data transfer objects (DTOs) for passing function arguments and collecting responses.
To achieve the most efficient network communications with the SDK, datagrams over TCP/IP are
used. However, remote access to the backend can also be enabled through a REST API interface on
nginx or apache web server. While this option may incur a slight overhead caused by the REST
specification, which utilizes the otherwise unnecessary HTTP protocol, it provides an alternative
means of remote access.
R2R
The R2R-SDK is a distinct SDK used for creating wallet extension plugins that introduce
specialized trading behavior to the back-end. These plugins define sub-APIs that assign specific
roles to both parties involved in a peer-to-peer trading interaction. For example, roles such as
doctor/patient, buyer/seller, player/casino, sports club/fan, CEO-CEO, CEO-CTO, etc. can be
defined through the use of this SDK.
Each role in an R2R protocol is managed by a distinct plugin running on each side, allowing for
personalized automation of each trade. These trades may be short-lived or long-term, and they can
accommodate online-offline changes made by any of the participating peers.

21 Wallet – Functions
The front-end wallet API provides users with the following function categories:

• Balance query.
• Address and keys maintenance.
• Personal coin management.

• Cash transfers.
• Invoicing (half-baked transactions)
• Crafting, signing and relaying evidences.

◦ Cash
◦ On-Chain/Off-Chain Data Storage (Files, key-Value and time-series)
◦ Software updates.

• Certificates maintenance (Graph of trust).
• Digest (hash) messages or files.
• Encryp/decrypt/encode/decode messages or files.
• Pairing RPC clients.

◦ QR based connections.
◦ Pre-pairing with PIN.
◦ On-demand guest wallet creation.

• Manage guest custodial wallets.
• Create QR codes.
• Daemon control and monitoring.
• Peer connection status and checks dashboard.
• versioning info.
• Trading. Role-to-role protocols (R2R).

◦ Business setup.
◦ R2R plugins maintenance.
◦ Business QR Codes that start trades straight away.
◦ Bookmarks maintenance.
◦ Access to specialized R2R sub-APIs.

22 Wallet – Daemon
The wallet daemon is a background operating
system process that is responsible for
safeguarding the user's private data, signing
evidence, and communicating with other peers.
This involves not only storing confidential
information like private keys but also any other
data that may be required to facilitate trades on
behalf of the user's interests. This may include
things such as Electronic Health Records
(EHRs), pictures, documents, chats, and more.

Wallet address.
Each wallet is associated with an address that is
derived from its private key, which is only
known to the user. This address is generated
upon the wallet daemon's initial launch and
stored in the file ~/.plebble/wallet/k. The
address serves as a public identifier that enables
wallets to connect and engage in trading.

Figure 29: Components of a plebble node
showing gov and (detailed) wallet daemon
processes. The default TCP port for gov (public
protocol) is 16672 and for wallet (private
protocol) is 16673

Custodial wallet addresses.
Users who operate as daemon system administrators under the gov linux account, also known as
sysops, have the option to configure their wallet to host guest wallets, which are also referred to as
custodial wallets. These wallets are allocated for other users and are identified with an arbitrary
string called subhome.
Connection string. Service QR code.
To enable automation and conduct specialized
business, users should be able to easily install
and configure the corresponding R2R plugin in
their wallet and generate a QR code that other
users can scan to initiate a peer-2-peer trade
between the two wallet daemons involved.
The connection string encoded in the QR is
formed by the following fields:

• channel: This field contains a network identifier and is required if the wallets are on a
different network other than channel 0. If this field is missing, it is assumed to be channel 0.

• address: This field identifies the remote wallet daemon.
• Subhome. If this field is missing, the connection is handled by the non-custodial wallet (root

wallet). If present, the peer wallet is an inner guest wallet managed by the root wallet.
• R2R protocol-role: If this field is missing, both wallets will start a dialog that supports

general features such as chat and sending files. If specified, both sides will start the
corresponding R2R protocol with specialized automation for activities such as banking or
shopping.

It's worth noting that the Plebble blockchain
integrates an Address Resolution System
(ARS), which can be used to resolve wallet
addresses to TCP/IP addresses. This may offer a
more secure and decentralized alternative to
traditional DNS systems, which are vulnerable
to various forms of attack. By leveraging the Plebble blockchain's built-in ARS, users can
potentially improve the reliability and security of their wallet address resolution process.
tsockets
The tsockets system library is an extension of the sockets library that adds an IPC (inter-process
communication) layer, which provides a trading-session abstraction. This enables programs to use a
context-rich environment for conducting trades, whether they are short or long-term, even in cases
of network disconnections, whether intended or not.
When a user wants to initiate a trade with another wallet daemon, they supply a connection string to
open a tsocket. The remote daemon, known as the follower, will also open a tsocket and attach the
requested automation. This enables both sides to communicate with each other and conduct trades
even if there are network disconnections or other issues. The tsocket system library provides a
convenient way for programs to use this abstraction layer and handle trading sessions with ease.
The program conducting the trade, the R2R protocol, is given contextual information in a key-value
structure after a successful connection. This information includes:

• unique trade id (tid, 20 bytes), common at both ends.
• Trade creation, last activity timestamps.
• Connection status: offline, online.
• Trade status. State machine.
• Remote endpoint info: wallet id, IP:Port
• Remote verified personalities (verified identity)
• Peer profile based on personality. Credit score.

Figure 30: General pattern of a connection
string used for starting trades with remote
wallets.

Drawing 1: Examples of a connection strings.
1.- A non-custodial wallet in a priavte network
on channel 9210. 2.- A hosted custodial wallet
‘bob’ on channel 0. 3.- A shoping protocol with
role seller run by bob’s custodial wallet.

1.- 9210 wq9XTruXWKjAu3k55Ch8TJ8Qtsm
2.- wq9XTruXWKjAu3k55Ch8TJ8Qtsm.bob
3.- wq9XTruXWKjAu3k55Ch8TJ8Qtsm.bob TVcbPSgR6wueWS0

• Local personality in use.
• Activity Log file and local storage path.
• Remote and Local available R2R protocols that can be started.
• Specific information from current ongoing R2R protocols.
• Workflows synchronization information for shared documents management.

Trades conducted through the R2R protocol
are persistent and their context and history are
preserved even if the underlying socket is
disconnected. This means that a trade can be
stopped at any point and resumed later without
losing any information or progress made.
Additionally, human actions can be inserted at
any point within the automation, allowing for
manual intervention if necessary. This
persistence and flexibility make the R2R
protocol well-suited for conducting complex,
long-term trades with multiple parties.
Personalities, also known as anonymized
digital identities, play an important role in the
R2R protocol as they allow for the creation of
persistent identities that are not linked to the
user's real-world identity. This enables users to
conduct trades and interact with others in a
pseudonymous manner, protecting their
privacy while still building trust based on their past interactions.
Personalities are created and managed by the wallet daemon and are used to generate unique trade
IDs (tids) for each trade, which are shared between both parties in the trade. The use of tids allows
for the tracking of trade history and context even in the case of disconnections or resumptions.
Personalities also include information such as credit score, which can be used to evaluate the
trustworthiness of a peer and make informed trade decisions. The use of personalities and their
associated profiles is an important aspect of the R2R protocol in building trust and confidence in the
trading process.

23 Role-2-Role (R2R) protocols
R2R protocols are used to facilitate P2P interactions within a trading context, and are powered by
separate programs known as wallet plugins. These plugins are responsible for executing the
automation necessary to conduct the trade.
The plugin architecture in the wallet system is supported in both the backend and frontend, which
enables developers to create custom interactions between actors of a Distributed Autonomous
Organization (DAO) using the wallet-r2r-SDK. This allows for a more flexible and customizable
system, as developers can create their own specialized features and protocols within the wallet
system.
There are two classes of R2R protocols - symmetric and asymmetric. Symmetric protocols involve
both parties adopting the same role, such as two banks conducting a transaction. Asymmetric
protocols involve two parties adopting different roles, such as a buyer and seller or a patient and
doctor in a healthcare context.
Developing a R2R protocol involves the specialization of several base objects provided in the SDK.
These objects include:

• The "business" class: This is a singleton class representing the user's central control over
their business. It manages databases, coins, imagery, marketing, accounting, and other

Figure 31: Wallets controlled with cellphones
doing P2P trades between them. The difference
between a custodial wallet and a non-custodial
wallet is the former run in other’s computer
(cloud scheme).

common information and algorithms that are not related to a specific interaction but to all of
them. It serves as a factory for instantiating protocols for each individual connection with
peers.

• The "protocol" class: This class is instantiated for every trade with a specific peer when
required. It controls the interaction and is where the automation logic resides. A tailored
subprotocol can be easily defined with the apitool and implemented as an extension of the
base protocol. For example, the bank role defines an API with functions for transferring
coins, invoicing, etc.

• The "workflows" class: This class consists of document definitions (compatible with the
W3C Verifiable Credentials standard) and flow definitions, or traveling directions.
Workflows facilitate the construction of bureaucracies within a DAO that can be leveraged
by higher decision-making algorithms embedded in the protocol class.

• Front-end fragments: UI/UX classes in different languages are included for two main
classes of Human-Machine Interfaces (HMI). These include a text console, which includes
the definition of menus, help screens, and shell input handlers, and graphical user interfaces
(GUIs), which provide flexibility for developing user dashboards that will be instantiated by
the GUI wallet front-end on user request. This gives users display and control over the
different instances of the protocol.

For symmetric protocols, the same set of classes can be used for both parties, while for asymmetric
protocols, separate sets of classes must be defined for each party, reflecting their distinct roles in the
trade.
The R2R protocol-specific software is packaged as shared libraries, with typically one shared
library per role, and optionally a common library with shared functionality. Additionally, one library
per workflow specification can be created, which once deployed, are installed in the plugins
directory of the wallet. The default directory for these shared libraries is often something like
~/home/gov/.plebble/wallet/trader/lib.
The distribution of R2R packages can be done by the author under any chosen license, whether it is
free or proprietary. For free software, the source-code form can optionally be distributed, and the
final user can perform the compilation. Alternatively, binary packages can be distributed for closed-
source software.
R2R plugins run attached to the wallet daemon process, which allows the front-ends to access the
plugin's functionality seamlessly. This also enables the front-ends to request and load specific
fragments on demand, providing an extensible and flexible user experience with a range of features.
To clarify, the wallet daemon manages both the root wallet (which is typically non-custodial) and
guest wallets (which can be either custodial or non-custodial). R2R protocols can be enabled and
disabled for individual wallets, regardless of whether they are custodial or non-custodial. This
allows for flexibility in how users interact with the protocols and manage their funds.
Built-in R2R Protocols.
The Plebble distribution currently includes several R2R protocols:

• Bank: a symmetric protocol that offers banking services such as money transfer, loans, and
a transaction obfuscation service (mixer).

• Shop: an asymmetric protocol designed for online shopping experiences.
• Curex: an asymmetric protocol that enables users to place cryptocurrency and fiat

currencies buy/sell orders. It includes a matching engine that uses fiat payments gateways
like stripe, and allows users to operate their own exchange.

24 Zero-Knowledge Proofs
While Zero-Knowledge Proofs (ZKPs) and STARKS are both cryptographic techniques for privacy
and security, they are not the same thing. ZKPs are a type of proof that allows one party to prove to
another party that a statement is true, without revealing any other information beyond the truth of
the statement. ZK-SNARKS is a specific type of ZKP that stands for Zero-Knowledge Succinct

Non-Interactive Argument of Knowledge, which is used in blockchain technology for privacy and
scalability.
On the other hand, STARKS (Scalable Transparent ARguments of Knowledge) is a different type of
proof system that also allows for verifiable computation without revealing any private information.
STARKS is an evolution of ZK-SNARKS, which is more transparent, scalable, and requires less
trust in the setup phase.
That being said, integrating ZKPs and/or STARKS into wallets can improve the privacy and
security of transactions by allowing users to prove that they possess certain information or assets
without revealing additional details. This can help prevent fraudulent activities and protect user
privacy.

By incorporating this cryptographic technology, a new type of privacy-preserving interactions can
be achieved, enabling users to provide cryptographic proofs that can be trusted without exposing
their private information. This can help establish trust and confidence during the course of a trade.
Consider a scenario where Alice and Bob are engaged in a trade, and Alice needs to verify if Bob
worked for the company TimeX between specific dates. Bob possesses a certificate containing the
required information, along with other private data like his salary. However, he is not willing to
disclose his salary at this stage of the trade. In a traditional setup, Bob would have to reveal the
entire document to Alice for her to perform signature verification and extract the relevant
information. However, this would give Alice an unfair advantage by allowing her to access Bob's
private information. Since the complete document is required for signature verification, Bob cannot
selectively reveal only the required information.
Using the emerging ZK-STARK technology, the following process would be carried out instead:
Alice creates a program that takes a signed document as input, verifies the signature, reads the
dates, and outputs either PASS or FAIL based on the values found. She sends the program to Bob
for review to ensure it doesn't reveal any unwanted information, and Bob then compiles and runs it
against his signed certificate from TimeX using the Plebble-ZK processor on his computer. Upon
execution, the program generates an output and a proof, which Bob sends back to Alice. Using the
same infrastructure, Alice can verify the output using the proof and be assured that Bob didn't
modify the program or alter the outputs. Alice now knows that Bob worked for TimeX during the
requested period, but she cannot learn any other details, such as the actual start/end dates or Bob's
salary. Importantly, the certificate never leaves Bob's computer, and no private information is
disclosed during the process.
When a predefined generic infrastructure is in place, the process can be simplified for the user. This
involves using standardized certificates that contain key-value fields and predefined field-based
proofs. With these templates, users do not need to exchange source-code or verify it, as they can
rely on built-in defaults. This makes the process as simple as specifying conditions based on field
values, with the remaining interactive process fully automated until the result is ready to be
consumed by the proof issuer.
The emergence of Zero-Knowledge proofs represents a significant shift in the way we can establish
trust without compromising privacy, making it a disruptive technology and a game changer in the
field.

25 Governance
Our goal is to promote a high level of distribution in blockchain governance through a unique
approach that involves independent release authorities, brands, and their respective communities.
development communities
One of the main weaknesses of projects that produce distributed systems is the centralization of
development. Although they often rely on open development communities, the work is typically
funneled through a centralized authority that controls the release process of the node software.

Our objective is to enhance distribution in blockchain governance by reducing the reliance on the
traditional centralized scheme. Instead, we aim to implement a more redundant system where
multiple authorities are involved, each with the power to push updates to only a limited number of
nodes.
Software updates
The original source code for the node software is held by the initial author or the genesis node. The
code is then compiled and transformed into a distribution file called an upgrade-blob, which
contains binaries for supported CPU architectures, as well as sources, resources, and an install script
called install_blob. When the install_blob is executed, the upgrade sequence is performed and the
node software is restarted.
Once the blob is produced, it is made public by being uploaded into a blockchain account owned by
the author. In the case of Plebble, updates are published in the address
4NwEEwnQbnwB7p8yCBNkx9uj71ru. The genesis node serves as the first distribution node, also
known as the brand genesis node or brand distribution end (BDE).
New users can download the software with the help of an existing node that publishes both the blob
and the install script. All Plebble nodes synchronize from the aforementioned address.
Users have the option to voluntarily mutate their node and become a BDE for a new brand by using
a different address to distribute the software. They can use the Plebble source code as upstream
input, and optionally modify it with their own variations and branding. They can then build new
blobs and upload them to the blockchain for other nodes to synchronize with.
This process effectively removes centralization in the development of the system by distributing the
software production across an unlimited number of BDEs. This creates a decentralized and
collaborative environment where users have the ability to modify and improve the software, and
share their changes with the community.
There is a potential risk for a BDE to become rogue and produce software that is unable to
cooperate with other BDE nodes or introduce malware. However, this problem can be mitigated
through a well-distributed BDE ecosystem. According to the Pareto rule, assuming 80% of BDEs
are honest and 20% are malicious, the network can still be resilient. This assumption is better
aligned with reality with a large number of BDEs.
The consequences of malicious behavior are constrained by the number of downstream nodes that
the malicious BDE is able to spawn, which is assumed to be much less than the number of
downstream nodes that honest BDEs are able to spawn. As a result, the network is able to maintain
its integrity and security despite the presence of malicious actors.
As previously mentioned, BDEs are responsible for building nodes and transforming source code
into blobs. The number of BDEs in the network is a critical factor in determining how decentralized
the software distribution activity is. A larger number of BDEs results in a more decentralized
network where the distribution of software is more evenly spread out, reducing the risk of
centralization and increasing the resilience of the system.
As release authorities, BDEs have full control over the quality of the source code they use as input
for the release. The source code lifecycle is a crucial factor in maintaining a healthy distributed
governance model, where no single person or organization has complete control over the software
being run by nodes worldwide. By having control over the source code, BDEs can ensure that the
software being released is of high quality and meets the standards of the community. This
decentralized approach to governance promotes transparency and accountability, ensuring that the
interests of all users are taken into consideration.
BDEs typically have their own development communities, and they collect improvements from
their communities using various channels such as BDE accounts on social media sites like GitHub
or GitLab, or even through naked Git. These changes are selectively propagated upstream the BDE
graph, giving the parent BDE (i.e., the one the BDE forked from) the opportunity to integrate
changes coming from both upstream and downstream.

As release authorities for their brand, BDEs have the discretion to merge interesting features or rule
out non-interesting ones according to their criteria. This allows for a collaborative approach to
software development, where the best ideas and improvements are integrated into the software
while avoiding unnecessary or conflicting changes. By working in this decentralized and
collaborative manner, the software is able to evolve in a way that best meets the needs of the
community, while maintaining the integrity and security of the system.
The decentralized and collaborative approach to software development through BDEs allows for
distributed governance, which is a unique feature in the web3 space. The scheme enables local
authorities (i.e., BDEs) to make decisions about which features are pushed to nodes feeding from
them, rather than having a system-wide guardian role that blocks suggested features.
This approach gives developers the freedom to choose from a wide range of BDEs to push changes
to, or to become BDEs themselves. When developers run their own BDEs, their changes are pushed
to nodes connected to them and are also propagated to other BDEs. The other BDEs then have the
discretion to accept or reject these changes for their brand. This allows for a more democratic and
flexible system of software development, where individual BDEs have more autonomy to make
decisions that best serve their community's needs.

26 Plebos Operating System
Node software offers a comprehensive operating system that is ideal for use in routers, virtual
machines, and affordable dedicated computers such as Raspberry Pi. This operating system can also
be utilized on desktops, laptops, and tablets, and can be developed and distributed by BDEs.
Our proposed operating system is a fully-featured solution for both servers and desktops. It is based
on the reliable Debian GNU/Linux, FreeBSD, or CheriBSD, operating at the kernel level. The
system includes user wallets and supports public processes that utilize public algorithms, commonly
referred to as smart contracts. These processes are displayed alongside regular (private) processes
and can be managed using modified versions of regular tools such as ps and kill.
In addition, the operating system incorporates progressive consensus algorithms that utilize both
progressive (or lazy) and finalization algorithms to reach a consensus on arbitrary data, such as a
ledger. While finalization algorithms can't scale to billions of nodes and require specialized
computers, progressive algorithms take a slower pace until consensus converges. For instance, it
takes around 60 minutes (or 6 blocks) for a transaction to settle in the Bitcoin network using this
approach.
Our objective is to establish a large-scale network where security is based on the sheer number of
low-profile nodes, so their participation has a minimal or unnoticeable impact on the system
resources usage.
We strongly believe that integrating core functionality is the most effective approach to propel
technology towards new and innovative ways of utilizing internet infrastructure. Our focus is on
privacy-preserving, serverless, peer-to-peer interactions, and our goal is to contribute to the
development of Web3 technology.

27 Power consumption
Right from its inception, Plebble has been
purposefully crafted to establish a network
powered by non-expensive nodes. Unlike
traditional distributed ledger architectures,
Plebble operates without Proof of Work (PoW),
which eliminates the need for mining.
Furthermore, the codebase, developed in the
highly-efficient programming language C++, is
optimized for speed and efficiency. Our testing

Figure 32: Raspberri Pi Zero is a low power
computer. Via de micro USB interface it runs at
5.2V. When connected to WiFi it draws around
200mA which is a total of 1W.

has demonstrated that Plebble runs seamlessly on low-profile hardware, such as Raspberry PI Zero,
without compromising on performance.

28 Enhanced Security
While we have implemented a software stack that can be deemed secure and has demonstrated
resilience against external attacks, it is crucial to bear in mind that it is never possible to provide
complete assurance of security. As the saying goes, "software always has bugs," and unforeseen
vulnerabilities can always arise.
Therefore, we understand the importance of remaining vigilant and continuously monitoring our
system for any potential issues. By keeping this mantra at the forefront of our approach, we can
proactively identify and address any security concerns that may arise, ensuring that our system
remains as secure as possible.
Future glitch
A system that undergoes continuous evolution and development runs the risk of introducing
regressions or new glitches that may pass initial testing but could eventually be shipped into
production, potentially compromising the privacy of user data.
To mitigate this risk, we implement rigorous testing protocols, including comprehensive quality
assurance and security testing, to identify and address any potential issues before they can be
released into production. Additionally, we have established an active monitoring system to detect
any anomalies or breaches that may occur after the system is launched.
Moreover, we value transparency and are committed to promptly addressing any issues that may
arise. We work closely with our user community to report any discovered vulnerabilities or potential
areas of concern, providing timely updates and implementing necessary measures to ensure the
security and privacy of user data.
CHERI
The introduction of a new generation of CPU architecture called CHERI (Capability Hardware
Enhanced RISC Instructions) has the potential to significantly enhance system security by reducing
successful attacks. CHERI introduces an extended set of instructions that allow for temporal and
spatial memory access protections to be enforced at the hardware level.
By incorporating CHERI into our system, we can provide an additional layer of protection against
potential security threats. This hardware-based security approach can effectively reduce the risk of
successful attacks by enforcing strong memory access protections. Additionally, this technology can
help to address potential vulnerabilities in existing software applications that may be exploited by
attackers.
Overall, we recognize the importance of continuously evaluating and integrating new technologies,
such as CHERI, to enhance the security and resilience of our system against potential threats.
We have fully leveraged the capabilities defined in the CHERI specification [6], developed by the
University of Cambridge, to enhance the security of our codebase. Our team has conducted
extensive testing of our system using an experimental SoC, the Morello board [7], supplied by
ARM. This testing was conducted as part of the Digital-Secure-by-Design [8] initiative, which is
supported by UK Research&Innovation [9].
By integrating CHERI into our system and testing it using cutting-edge hardware like the Morello
board, we have demonstrated our commitment to leveraging the latest technological advancements
to enhance the security of our system. We believe that this approach will enable us to provide the
highest level of security and resilience possible to our users.

29 Reference Implementation
We have taken great care to ensure that our codebase is well-structured, maintainable, and follows
clean-code guidelines. Our reference implementation is split into logic layers, allowing for efficient
development and maintenance.

For the backend, we have selected C++ as the language of choice, providing maximum performance
and efficiency for running on small devices such as IoT devices, mobile devices, and embedded
internet routers. We have extensively tested our backend on devices such as the Raspberry PI Zero.
To provide a user-friendly front-end, we utilize a variety of languages, including C++, Java, and
WebAssembly (WASM). Our SDK is designed to be easily extensible to support additional
programming languages.
We have also developed a low-footprint network protocol that runs over the ubiquitous
TCP/UDP/IP stack. This protocol is designed to minimize overhead and eliminate the need for
higher-level protocols and data representation formats such as HTTP, HTTPS, JSON, and XML.
Our source code is available on GitHub at [51], where we welcome contributions from the
community. Additionally, we have published a landing page for Plebble at https://plebble.net, which
includes links to our community resources.

Acknowledgements
To my family Aida, Axel and Alvaro, parents Marcos and Sole, Aida’s parents Pedro and Pilar for
their love, patience, generosity, cooking skills and enthusiasm for whatever I do.
To my FFF group (Friends, Family and Fools) who helped bootstrapping the first nodes: Carlos,
Queque, Helena, Javi. Felipe, Noemi, Noe, Ruben, Judith, Trucha, Koncio, Billy, Pupilo, Ferni,
Mayte, Arancha, Nono, Julio Jorge, Tania, Mejuto, Fernando Norm, Carras, Tomas, Freddy, Paco
Ferre, Cesar Fuentes, Maite ESA, Simeon, Rene and Manju.
I would like to thank Satoshi Nakamoto, for publishing the inspirational material that triggered the
crypto movement, fueled my research and development on the generic goal of blueprinting the
plumbing for a better world leveraging the full potential the ubiquitous internet has to offer in
untested ways, within an environment of continuous breakthroughs, news, passion, hype and fun.
To those that opposed me in insane way making me stronger, whose names I try to forget.
The next Oscar goes to the Plebble community, small but supportive during development of the
Plebble codebase.
I would like to thank Professors Simeon Nelson and Ljubomir Jankovic for opening a Doctorate
position in the Department of Future Societies of the University of Hertforthshire, partially inpired
from conversations with me about the blockchain.
Last but not least, I’d like to thank Mr. Edward Cole for funding and making this work possible,
adding in addition a great deal of knowledge, passion and commitment. Also for founding and
running KATLAS Technology, a Tech startup based on plebble committed to bring digital
transformation in the business space. He is also responsible for coining the name plebble, a twist
around ‘us’ as plebs.

References
[1] Civilization types.

https://en.wikipedia.org/wiki/Kardashev_scale

[2] Standards for Efficient Cryptography.

http://www.secg.org/sec2-v2.pdf

[3] Bitcoin: A Peer-to-Peer Electronic Cash System. Satoshi Nakamoto.

https://plebble.net/bitcoin.pdf

[4] Verifiable credentials.

https://www.w3.org/TR/vc-data-model

[5] RIPEMD160.

https://www.w3.org/TR/vc-data-model
https://plebble.net/bitcoin.pdf
http://www.secg.org/sec2-v2.pdf
https://en.wikipedia.org/wiki/Kardashev_scale
https://plebble.net/

https://homes.esat.kuleuven.be/~bosselae/ripemd160/pdf/AB-9601/AB-9601.pdf

[6] CHERI Architecture.

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri

[7] ARM Morello.

https://www.arm.com/architecture/cpu/morello

[8] Digital Secure by Design.

https://www.dsbd.tech

[9] UKRI.

https://www.ukri.org

[10] One-Way HASH.

http://www.aspencrypt.com/crypto101_hash.html

[11] The Internet of Money Vol III – A.M. Antonopoulos. P37. ISBN 9781947910171

[12] Swarm Intelligence.

https://www.sciencedirect.com/topics/engineering/swarm-intelligence

[13] Tor. The Second-Generation Onion Router.

https://svn-archive.torproject.org/svn/projects/design-paper/tor-design.pdf

[14] Proportional block reward as a price stabilization mechanism for peer-to-peer electronic cash system.

https://ergon.moe/prop-reward.pdf

[15] Bitcoin cash.

https://bitcoincash.org

[16] There is one global chain.

https://nakamotostudies.org/emails/satoshi-reply-to-mike-hearn

[17] Ethereum. https://ethereum.org/en/whitepaper

[18] IOTA.

https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/
iota1_4_3.pdf

[19] Namecoin.

https://www.namecoin.org/resources/whitepaper

[20] Litecoin.

https://litecoin.org

[21] Capitalization ranks.

https://coinmarketcap.com

[22] Nano.

https://www.exodus.com/assets/docs/nano-whitepaper.pdf

[23] The blockchain trilemma.

https://vitalik.ca/general/2021/04/07/sharding.html

https://vitalik.ca/general/2021/04/07/sharding.html
https://www.exodus.com/assets/docs/nano-whitepaper.pdf
https://coinmarketcap.com/
https://litecoin.org/
https://www.namecoin.org/resources/whitepaper
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://ethereum.org/en/whitepaper
https://nakamotostudies.org/emails/satoshi-reply-to-mike-hearn
https://bitcoincash.org/
https://ergon.moe/prop-reward.pdf
https://svn-archive.torproject.org/svn/projects/design-paper/tor-design.pdf
https://www.sciencedirect.com/topics/engineering/swarm-intelligence
http://www.aspencrypt.com/crypto101_hash.html
https://www.ukri.org/
https://www.dsbd.tech/
https://www.arm.com/architecture/cpu/morello
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri
https://homes.esat.kuleuven.be/~bosselae/ripemd160/pdf/AB-9601/AB-9601.pdf

[25] Debt: The first 5000 years. David Graeber. ISBN 978-1612194196

[26] The Blocksize War. Jonathan Bier. ISBN 9798721895609

[27] Datagram implementation.

https://github.com/root1m3/plebble/blob/main/core0/us/gov/socket/datagram.h

[28] Service API for gov and wallet.

https://github.com/root1m3/plebble/tree/main/core0/us/api/netsvc

[29] Clique manager.

https://github.com/root1m3/plebble/tree/main/core0/us/gov/peer

[30] DFS. Built-in Distributed File System.

https://github.com/root1m3/plebble/tree/main/core0/us/gov/dfs

[31] k-d tree.

https://en.wikipedia.org/wiki/K-d_tree

[32] Ethereum Smart contracts.

https://ethereum.org/en/smart-contracts

[33] The Cathedral & the bazaar. Eric. S. Raymond. Musings on Linux and Open Source by an accidental revolutionary.

[34] The Wisdom of Crowds. James Surowiecki. Why the many are smarter than the few.

[35] The Hitchhiker’s guide to the galaxy. Douglas Adams. Out-of-the-box thinking.

[36] Inventing the Future. Postcapitalism and a World Without Work. Nick Srnicek, Alex Williams. Demand full
automation. Demand Universal basic income.

[37] Queremos su dinero. Jesus Martinez del Vas. The story of AMSTRAD Spain. Musings on consumer electronics
distribution.

[38] The history of ARM on its 25th anniversary. ISBN 9781906615956

[39] Crypto. Steven Levy. ISBN 9780140244328

[40] Anarchy in the Organism. Simeon Nelson. ISBN 9781908966285

[41] Manufacturing Consent. Edward S. Herman & Noam Chomsky. ISBN 9780099533115 The political economy of
the mass media.

[42] We are Anonymous. Parmy Olson. ISBN 9780434022083 Inside the hacker world of LulzSec, Anonymous and the
Global cyber Insurgency.

[43] Just for Fun. Linus Torvalds. ISBN 1587990806 The story of an accidental revolutionary.

[44] The Snowden Files. Luke Harding. ISBN 9781783351046 The inside story of the world’s most wanted man.

[45] Doughnut Economics. Kate Raworth. ISBN 9781847941398 Seven ways to think like a 21st Century Economist

[46] The Infinite Machine. Camila Russo. ISBN 9780062886149 How an army of crypto-hackers is building the next
internet with Ethereum.

[47] Crypto Economy. Aries Wanlin Wang. ISBN 9781510744820 How blockchain, cryptocurrency and token-economy
are disrupting the financial world.

[48] Attack of the 50 foot blockchain. David Gerard. ISBN 9781974000067 Bitcoin and blockchains are not a
technological story, but a psychology story.

[49] Scalability rules. Martin L. Abbott, Michael T. Fisher. ISBN 9780134431604 Principles for scaling web sites

https://ethereum.org/en/smart-contracts
https://en.wikipedia.org/wiki/K-d_tree
https://github.com/root1m3/plebble/tree/main/core0/us/gov/dfs
https://github.com/root1m3/plebble/tree/main/core0/us/gov/peer
https://github.com/root1m3/plebble/tree/main/core0/us/api/netsvc
https://github.com/root1m3/plebble/blob/main/core0/us/gov/socket/datagram.h

[50] The mythical man-month. ISBN 0201006502 Essays on Software Engineering

[51] Plebble Reference Implementation.

https://github.com/root1m3/plebble

[52] KATLAS Technology Landing page.

https://katlastechnology.com

[53] apitool. API maintenance.

https://github.com/root1m3/plebble/tree/main/core0/us/api

[54] apitool input files.

https://github.com/root1m3/plebble/tree/main/core0/us/api/data

[55] apitool output. service numbers

https://github.com/root1m3/plebble/tree/main/core0/us/api/netsvc

[56] plebble bank R2R symmetric protocol.

https://github.com/root1m3/plebble/tree/main/core0/us/wallet/trader/r2r/w2w

[57] plebble shop R2R asymmetric protocol.

https://github.com/root1m3/plebble/tree/main/core1/us/trader/r2r/bid2ask

[58] M. Pwase, R, Shostak, L. Lamport - Reaching Agreement in the Presence of Faults.

http://lamport.azurewebsites.net/pubs/reaching.pdf

[59] Leslie Lamport - Time, Clocks, and the Ordering of Events in a Distributed System.

http://lamport.azurewebsites.net/pubs/time-clocks.pdf

[60] PBFT - Practical Byzantine Fault Tolerance.

https://pmg.csail.mit.edu/papers/osdi99.pdf

[61] SBFT - A Scalable and Decentralized Trust Infrastructure.

https://arxiv.org/pdf/1804.01626.pdf

[62] Pastry - Scalable, decentralized object location and routing for large-scale peer-to-peer systems.

https://rowstron.azurewebsites.net/PAST/pastry.pdf

[63] CAN - A Scalable Content-Addressable Network.

https://people.eecs.berkeley.edu/~sylvia/papers/cans.pdf

[64] Chord - A Scalable Peer-to-peer Lookup Service for Internet Applications.

https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf

[65] Tapestry - A Resilient Global-Scale Overlay for Service Deployment.

https://pdos.csail.mit.edu/~strib/docs/tapestry/tapestry_jsac03.pdf

[66] Kademlia - A peer-to-peer Information System Based on the XOR Metric.

https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf

[67] Our-System The quest for scaling BFT Consensus through Tree-Based Vote Aggregation.

https://arxiv.org/pdf/2103.12112.pdf

https://arxiv.org/pdf/2103.12112.pdf
https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
https://pdos.csail.mit.edu/~strib/docs/tapestry/tapestry_jsac03.pdf
https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf
https://people.eecs.berkeley.edu/~sylvia/papers/cans.pdf
https://rowstron.azurewebsites.net/PAST/pastry.pdf
https://arxiv.org/pdf/1804.01626.pdf
https://pmg.csail.mit.edu/papers/osdi99.pdf
http://lamport.azurewebsites.net/pubs/time-clocks.pdf
http://lamport.azurewebsites.net/pubs/reaching.pdf
https://github.com/root1m3/plebble/tree/main/core1/us/trader/r2r/bid2ask
https://github.com/root1m3/plebble/tree/main/core0/us/wallet/trader/r2r/w2w
https://github.com/root1m3/plebble/tree/main/core0/us/api/netsvc
https://github.com/root1m3/plebble/tree/main/core0/us/api/data
https://github.com/root1m3/plebble/tree/main/core0/us/api
https://katlastechnology.com/
https://github.com/root1m3/plebble

